干旱区研究 ›› 2023, Vol. 40 ›› Issue (6): 905-915.doi: 10.13866/j.azr.2023.06.06 cstr: 32277.14.AZR.20230606
张颂安1(),刘轩1,赵珮杉1,高广磊1,2,3(),张英1,3,丁国栋1,2,3,柳叶1,任悦1
收稿日期:
2022-09-21
修回日期:
2022-12-07
出版日期:
2023-06-15
发布日期:
2023-06-21
作者简介:
张颂安(1997-),女,硕士研究生,主要研究方向为荒漠化防治. E-mail: 基金资助:
ZHANG Songan1(),LIU Xuan1,ZHAO Peishan1,GAO Guanglei1,2,3(),ZHANG Ying1,3,DING Guodong1,2,3,LIU Ye1,REN Yue1
Received:
2022-09-21
Revised:
2022-12-07
Published:
2023-06-15
Online:
2023-06-21
摘要:
为揭示呼伦贝尔沙地樟子松人工林土壤细菌相互关系,以呼伦贝尔沙地不同林龄樟子松人工林(25 a、34 a和43 a)为研究对象,以沙质草地为对照,采用分子生态网络分析法对不同土层(0~10 cm和10~20 cm)土壤细菌群落进行比较分析。结果表明:(1) 从25 a到43 a,土壤细菌网络总边数增多,平均路径长度降低。土壤深度由0~10 cm到10~20 cm,人工林土壤细菌网络总边数减少,平均路径长度升高。与沙质草地相比,人工林土壤细菌网络总边数较少。(2) 25 a人工林关键菌种隶属于嗜酸菌目(Acidimicrobiales)、RB41和MB-A2-108,34 a人工林关键菌种隶属于Gaiellales,43 a人工林关键菌种隶属于Gaiellales、RB41、Subgroup_7、Subgroup_6、和DA101_soil_group,草地关键菌种隶属于匿杆菌门(Latescibacteria)。(3) 全氮、氨氮、微生物碳含量和脲酶酶活性对土壤细菌网络中具有高中介中心性的部分细菌有显著正相关影响(P<0.05);转化酶和过氧化氢酶活性、土壤含水量以及速效磷含量对土壤细菌网络中具有高中介中心性的部分细菌有显著负相关影响(P<0.05);土壤有机质对土壤细菌网络中具有高中介中心性的部分细菌既有显著正相关影响又有显著负相关影响(P<0.05)。樟子松人工林从25 a到43 a,土壤细菌网络愈加复杂和紧密,土壤深度由0~10 cm到10~20 cm,网络复杂性和紧密度降低;与草地相比,人工林土壤细菌网络复杂性较低。43 a人工林土壤细菌网络关键菌种类型数量最多。另外,土壤细菌网络受土壤有机质影响最大。研究结果有助于深入理解呼伦贝尔沙地樟子松人工林土壤细菌群落,并为呼伦贝尔沙地樟子松人工林的可持续经营提供科技支撑。
张颂安, 刘轩, 赵珮杉, 高广磊, 张英, 丁国栋, 柳叶, 任悦. 呼伦贝尔沙地樟子松人工林土壤细菌网络特征[J]. 干旱区研究, 2023, 40(6): 905-915.
ZHANG Songan, LIU Xuan, ZHAO Peishan, GAO Guanglei, ZHANG Ying, DING Guodong, LIU Ye, REN Yue. Soil bacterial networks in Pinus sylvestris var. mongolica plantations of the Hulunbuir Desert[J]. Arid Zone Research, 2023, 40(6): 905-915.
表3
呼伦贝尔沙地樟子松人工林土壤细菌网络拓扑特征"
拓扑特征 | HLP25A | HLP25B | HLP34A | HLP34B | HLP43A | HLP43B | HLGA | HLGB | |
---|---|---|---|---|---|---|---|---|---|
经验网络 | 节点 | 306 | 304 | 307 | 292 | 300 | 268 | 330 | 325 |
边 | 2395 | 2262 | 2483 | 2313 | 3072 | 2011 | 2689 | 2831 | |
平均连通度 | 15.65 | 14.88 | 16.18 | 15.84 | 20.48 | 15.01 | 16.30 | 17.42 | |
模块化 | 0.75 | 0.77 | 0.70 | 0.72 | 0.62 | 0.62 | 0.71 | 0.71 | |
平均路径长度 | 11.89 | 15.26 | 11.50 | 11.67 | 8.57 | 13.81 | 12.14 | 11.52 | |
平均聚类系数 | 0.75 | 0.74 | 0.75 | 0.75 | 0.76 | 0.74 | 0.74 | 0.75 | |
正相关/% | 54.53 | 51.50 | 52.56 | 49.72 | 52.96 | 50.22 | 48.83 | 53.27 | |
负相关/% | 45.47 | 48.50 | 47.44 | 50.28 | 47.04 | 49.78 | 51.17 | 46.73 | |
随机网络 | 模块化 | 0.21 | 0.21 | 0.20 | 0.20 | 0.18 | 0.21 | 0.21 | 0.20 |
平均路径长度 | 2.37 | 2.41 | 2.35 | 2.34 | 2.16 | 2.35 | 2.37 | 2.32 | |
平均聚类系数 | 0.05 | 0.05 | 0.06 | 0.05 | 0.07 | 0.05 | 0.05 | 0.05 |
表4
呼伦贝尔沙地樟子松人工林土壤细菌网络连接节点"
关键菌种 | OTU | 门 | 纲 | 目 | 科 | 属 |
---|---|---|---|---|---|---|
HLP25A | OTU144 | Actinobacteria | Acidimicrobiia | Acidimicrobiales | - | - |
HLP25B | OTU182 | Acidobacteria | Blastocatellia | Blastocatellales | Blastocatellaceae_Subgroup_4 | RB41 |
OTU291 | Actinobacteria | MB-A2-108 | - | - | - | |
HLP34A | OTU149 | Actinobacteria | Thermoleophilia | Gaiellales | - | - |
HLP34B | - | - | - | - | - | - |
HLP43A | OTU66 | Acidobacteria | Blastocatellia | Blastocatellales | Blastocatellaceae_Subgroup_4 | RB41 |
OTU677 | Acidobacteria | Holophagae | Subgroup_7 | - | - | |
OTU319 | Acidobacteria | Subgroup_6 | - | - | - | |
OTU556 | Verrucomicrobia | Spartobacteria | Chthoniobacterales | DA101_soil_group | - | |
HLP43B | OTU152 | Acidobacteria | Subgroup_6 | - | - | - |
OTU3844 | Acidobacteria | Thermoleophilia | Gaiellales | - | - | |
HLGA | - | - | - | - | - | - |
HLGB | OTU718 | Latescibacteria | - | - | - | - |
表5
呼伦贝尔沙地樟子松人工林土壤理化性质与酶活性"
土壤因子 | HLP25A | HLP25B | HLP34A | HLP34B | HLP43A | HLP43B | HLGA | HLGB |
---|---|---|---|---|---|---|---|---|
土壤含水量SWC/% | 10.44±3.66a | 5.77±1.39A | 9.00±1.27a | 6.66±0.78A | 6.88±0.47b | 5.81±2.08A | 10.18±0.89a | 7.69±1.35A |
全氮TN/(g·kg-1) | 0.82±0.01b | 0.56±0.01C | 0.77±0.01c | 0.63±0.00A | 0.51±0.03d | 0.49±0.01D | 0.93±0.02a | 0.59±0.01B |
土壤有机质SOM /(g·kg-1) | 2.31±0.06a | 1.90±0.05A | 2.11±0.05b | 1.82±0.02AB | 1.71±0.12c | 1.32±0.06C | 2.01±0.08b | 1.74±0.06B |
氨氮AN/(mg·kg-1) | 45.37±3.08ab | 84.73±1.59A | 43.30±2.19b | 44.57±2.99B | 50.06±3.36a | 30.63±5.17C | 49.82±3.67a | 44.12±0.57B |
速效磷AP/(g·kg-1) | 3.87±0.31a | 3.35±0.51A | 6.11±1.44a | 4.93±0.30A | 5.40±1.96a | 5.07±0.84A | 4.13±0.65a | 3.28±1.86A |
过氧化氢酶CA/(U·g-1) | 938.76±31.28b | 545.09±528.63AB | 132.00±38.11c | 172.64±7.02B | 997.95±4.60a | 921.19±29.80A | 992.65±22.58a | 884.29±25.03A |
转化酶IA/(U·g-1) | 70.92±6.00c | 41.24±2.36B | 69.63±1.11c | 41.64±7.94B | 97.93±3.00a | 48.94±6.24B | 81.17±4.79b | 74.61±8.92A |
脲酶SU/(U·g-1) | 635.42±35.36a | 213.98±68.25A | 396.04±43.47c | 251.52±20.26A | 511.12±26.12b | 223.20±162.05A | 155.32±28.05d | 258.03±26.61A |
微生物碳MC /(mg·kg-1) | 21.58±12.89c | 18.52±14.02B | 73.09±1.78a | 44.89±2.15A | 14.32±1.74c | 11.60±3.30B | 59.32±4.63b | 51.75±1.16A |
[1] |
Bardgett R D, Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528): 505-511.
doi: 10.1038/nature13855 |
[2] |
Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017, 15(10): 579-590.
doi: 10.1038/nrmicro.2017.87 pmid: 28824177 |
[3] |
Feng W, Zhang Y Q, Lai Z R, et al. Soil bacterial and eukaryotic co-occurrence networks across a desert climate gradient in northern China[J]. Land Degradation and Development, 2021, 32(5): 1938-1950.
doi: 10.1002/ldr.v32.5 |
[4] | 丁钰珮, 杜宇佳, 高广磊, 等. 呼伦贝尔沙地樟子松人工林土壤细菌群落结构与功能预测[J]. 生态学报, 2021, 41(10): 4131-4139. |
[Ding Yupei, Du Yujia, Gao Guanglei, et al. Soil bacterial community structure and functional prediction of Pinus sylvestris var. mongolica plantations in the Hulun Buir Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(10): 4131-4139.] | |
[5] |
Konopka A, Lindemann S, Fredrickson J. Dynamics in microbial communities: Unraveling mechanisms to identify principles[J]. The ISME Journal, 2015, 9(7): 1488-1495.
doi: 10.1038/ismej.2014.251 |
[6] |
Zhang C, Jiao S, Shu D, et al. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization[J]. Stress Biology, 2021, 1(15): 4-13.
doi: 10.1007/s44154-021-00006-1 |
[7] |
Karimi B, Dequiedt S, Terrat S, et al. Biogeography of soil bacterial networks along a gradient of cropping Intensity[J]. Scientific Reports, 2019, 9(1): 3812.
doi: 10.1038/s41598-019-40422-y pmid: 30846759 |
[8] |
Deng Y, Jiang Y H, Yang Y F, et al. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13(1): 113.
doi: 10.1186/1471-2105-13-113 |
[9] |
Ma B, Wang H Z, Dsouza M, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China[J]. The ISME Journal, 2016, 10(8): 1891-1901.
doi: 10.1038/ismej.2015.261 |
[10] | 李前, 李忠武, 聂小东, 等. 水土流失防治措施对马尾松林土壤微生物群落分子生态网络的影响[J]. 土壤学报, 2022, 59(3): 819-832. |
[Li Qian, Li Zhongwu, Nie Xiaodong, et al. Effects of prevention and control measures of soil erosion on molecular ecological network of soil microbial community in Pinus massoniana plantation[J]. Acta Pedologica Sinica, 2022, 59(3): 819-832.] | |
[11] |
任悦, 高广磊, 丁国栋, 等. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征[J]. 应用生态学报, 2019, 30(3): 743-750.
doi: 10.13287/j.1001-9332.201903.040 |
[Ren Yue, Gao Guanglei, Ding Guodong, et al. Stoichiometric characteristics of nitrogen and phosphorus in leaf-litter-soil system of Pinus sylvestris var. mongolica plantations[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 743-750.]
doi: 10.13287/j.1001-9332.201903.040 |
|
[12] | 杜宇佳, 高广磊, 陈丽华, 等. 呼伦贝尔沙区土壤细菌群落结构与功能预测[J]. 中国环境科学, 2019, 39(11): 4840-4848. |
[Du Yujia, Gao Guanglei, Chen Lihua, et al. Soil bacteria community structure and function prediction in the Hulun Buir Sandy Area[J]. China Environmental Science, 2019, 39(11): 4840-4848.] | |
[13] | 曹红雨, 高广磊, 丁国栋, 等. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J]. 林业科学, 2019, 55(8): 118-127. |
[Cao Hongyu, Gao Guanglei, Ding Guodong, et al. Community structure and diversity of soil fungi in four habitats in Hulun Buir Sandy Land[J]. Scientia Silvae Sinicae, 2019, 55(8): 118-127.] | |
[14] |
Edgar R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996- 998.
doi: 10.1038/nmeth.2604 pmid: 23955772 |
[15] | Bastian M, Heymann S, Jacomy M. Gephi: An open source software for exploring and manipulating networks[Z]. Proceedings of the International AAAI Conference on Weblogs and Social Media, ICWSM San Jose, California, USA, 2009, 3(1): 361-362. |
[16] |
Deng Y, Jiang Y H, Yang Y, et al. Molecular ecological network analyses[J]. Bmc Bioinformatics, 2012, 13(1): 113.
doi: 10.1186/1471-2105-13-113 |
[17] | 石文莉, 蒋如东, 马天海, 等. 太湖不同营养水平湖区沉积环境微生物分子生态网络特征及其环境响应分析[J]. 南京大学学报(自然科学), 2018, 54(5): 1045-1056. |
[Shi Wenli, Jiang Rudong, Ma Tianhai, et al. Molecular ecological network analysis of sedimental microbial community and its response to environmental factors in different trophic status areas of Taihu Lake[J]. Journal of Nanjing University(Natural Science), 2018, 54(5): 1045-1056.] | |
[18] | 李冰, 李玉双, 魏建兵, 等. 不同土地利用方式对土壤细菌分子生态网络的影响[J]. 环境科学, 2020, 41(3): 1456-1465. |
[Li Bing, Li Yushuang, Wei Jianbing, et al. Effects of different land use typess on the molecular ecological network of soil bacteria[J]. Environmental Science, 2020, 41(3): 1456-1465.] | |
[19] | 赵辉, 周运超, 任启飞. 不同林龄马尾松人工林土壤微生物群落结构和功能多样性演变[J]. 土壤学报, 2020, 57(1): 227-238. |
[Zhao Hui, Zhou Yunchao, Ren Qifei. Evolution of soil microbial community structure and functional diversity in Pinus massoniana plantations with age of stand[J]. Acta Pedologica Sinica, 2020, 57(1): 227-238.] | |
[20] |
Xiong C, Zhu Y G, Wang J T, et al. Host selection shapes crop microbiome assembly and network complexity[J]. The New Phytologist, 2020, 229(2): 1091-1104.
doi: 10.1111/nph.v229.2 |
[21] |
Zhang L, Zhou J C, George T, et al. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends in Plant Science, 2021, 27(4): 402-411.
doi: 10.1016/j.tplants.2021.10.008 pmid: 34782247 |
[22] |
Xue L, Ren H D, Brodribb T J, et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation[J]. Forest Ecology and Management, 2020, 459: 117805.
doi: 10.1016/j.foreco.2019.117805 |
[23] | 杜雄峰, 厉舒祯, 冯凯, 等. 农牧交错带草地土壤剖面微生物总量、多样性和互作网络的垂直分布特征[J]. 微生物学通报, 2020, 47(9): 2789-2806. |
[Du Xiongfeng, Li Shuzhen, Feng Kai, et al. Vertical distribution features of microbial quantity, diversity and interactions along soil profiles in an agropasture grassland[J]. Microbiology China, 2020, 47(9): 2789-2806.] | |
[24] | 张鹏, 李颖, 王业林, 等. 短脚锦鸡儿灌丛对植物群落和土壤微生物群落的促进效应研究[J]. 干旱区研究, 2021, 38(2): 421-428. |
[Zhang Peng, Li Ying, Wang Yelin, et al. The positive effect of Caragana breviflora shrubs on plant communities and soil microbial communities in the Inner Mongolia desert region[J]. Arid Zone Research, 2021, 38(2): 421-428.] | |
[25] |
Ma L, Zhang J B, Li Z Q, et al. Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis[J]. Applied Soil Ecology, 2020, 148: 103506.
doi: 10.1016/j.apsoil.2020.103506 |
[26] | 程萌, 马俊杰, 刘丹, 等. CO2封存泄漏的稻田土壤细菌监测指标筛选研究[J]. 环境科学学报, 2021, 41(6): 2390-2401. |
[Cheng Meng, Ma Junjie, Liu Dan, et al. Screening of bacteria monitoring indicators in paddy soil under sealed CO2leakage[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2390-2401.] | |
[27] |
杨虎, 马巧蓉, 杨君珑, 等. 宁夏南部生态移民迁出区不同恢复模式土壤微生物群落特征[J]. 应用生态学报, 2022, 33(1): 219-228.
doi: 10.13287/j.1001-9332.202201.036 |
[Yang Hu, Ma Qiaorong, Yang Junlong, et al. Characteristics of soil microbial communities in different restoration models in the ecological immigrants’emigration area in southern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 219-228.]
doi: 10.13287/j.1001-9332.202201.036 |
|
[28] |
Mizuno C M, Francisco R V, Rohit G, et al. Genomes of planktonic Acidimicrobiales: Widening horizons for marine Actinobacteria by metagenomics[J]. mBio, 2015, 6(1). DOI:10.1128/mBio.02083-14.
doi: 10.1128/mBio.02083-14 |
[29] |
Cao J X. Plantations of Cinnamomum camphora (Linn.) presl with distinct soil bacterial communities mitigate soil acidity within polluted locations in Southwest China[J]. Forests, 2021, 12(6): 657.
doi: 10.3390/f12060657 |
[30] |
Jie Y C, Wu S L, Xue S, et al. Seasonal nutrient cycling and enrichment of nutrient-related soil microbes aid in the adaptation of Ramie (Boehmeria nivea L.) to nutrient-deficient conditions[J]. Frontiers in Plant Science, 2021, 12: 644904.
doi: 10.3389/fpls.2021.644904 |
[31] |
Stevenson A, Hallsworth J E. Water and temperature relations of soil Actinobacteria[J]. Environmental Microbiology Reports, 2014, 6(6): 744-755.
doi: 10.1111/1758-2229.12199 pmid: 25132485 |
[32] | 康宝天, 侯扶江, BOWATTE S. 祁连山高寒草甸和荒漠草原土壤细菌群落的结构特征[J]. 草业科学, 2020, 37(1): 10-19. |
[Kang Baotian, Hou Fujiang, BOWATTE S. Characterization of soil bacterial communities in alpine and desert grasslands in the Qilian Mountain range[J]. Pratacultural Science, 2020, 37(1): 10-19.] | |
[33] | 王泽铭, 李传虹, 马巧丽, 等. 湿度盐度pH协同驱动锡林河景观疣微菌群空间异质性[J]. 微生物学报, 2021, 61(6): 1728-1742. |
[Wang Zeming, Li Chuanhong, Ma Qiaoli, et al. Moisture salinity and pH co-driving spatial heterogeneity of verrucomicrobial populations in Xilin River landscape[J]. Acta Microbiologica Sinica, 2021, 61(6): 1728-1742.] | |
[34] | 梁新波, 张晨, 张冠初, 等. 花生根际微生物群落结构对干旱和盐胁迫的响应[J]. 花生学报, 2021, 50(1): 33-40. |
[Liang Xinbo, Zhang Chen, Zhang Guanchu, et al. Response of peanut rhizosphere bacterial community structure to salt and drought stress[J]. Journal of Peanut Science, 2021, 50(1): 33-40.] | |
[35] |
Li B B, Roley S S, Duncan D S, et al. Long-term excess nitrogen fertilizer increases sensitivity of soil microbial community to seasonal change revealed by ecological network and metagenome analyses[J]. Soil Biology and Biochemistry, 2021, 160: 108349.
doi: 10.1016/j.soilbio.2021.108349 |
[36] |
Youssef Noha H, Farag Ibrahim F, Rinke Christian, et al. In silico analysis of the metabolic potential and niche specialization of candidate phylum “Latescibacteria” (WS3)[J]. PloS One, 2015, 10(6):e0127499.
doi: 10.1371/journal.pone.0127499 |
[37] |
Cao H Y, Du Y J, Gao G L, et al. Afforestation of Pinus sylvestris var. mongolica remodelled soil bacterial community and potential metabolic function in the Horqin Desert[J]. Global Ecology and Conservation, 2021, DOI: 10.1016/J.GECCO.2021.E01716.
doi: 10.1016/J.GECCO.2021.E01716 |
[38] |
Chakraborty P, Tribedi P. Functional diversity performs a key role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria from soil[J]. Folia Microbiologica, 2019, 64(3): 461-470.
doi: 10.1007/s12223-018-00672-1 pmid: 30610538 |
[39] |
Wang J Y, Ren C J, Feng X X, et al. Temperature sensitivity of soil carbon decomposition due to shifts in soil extracellular enzymes after afforestation[J]. Geoderma, 2020, 374: 114426.
doi: 10.1016/j.geoderma.2020.114426 |
[40] | 吴宪, 胡菏, 王蕊, 等. 化肥减量和有机替代对潮土微生物群落分子生态网络的影响[J]. 土壤学报, 2022, 59(2): 545-556. |
[Wu Xian, Hu He, Wang Rui, et al. Effects of reduction of chemical fertilizer and substitution coupled with organic manure on the molecular ecological network of microbial communities in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2022, 59(2): 545-556.] | |
[41] | 邢鏻木, 李强, 高原千惠, 等. 不同供磷水平对紫花苜蓿根际微生物功能多样性的影响[J]. 干旱区研究, 2022, 39(5): 1496-1503. |
[Xing Linmu, Li Qiang, Gao Yuanqianhui, et al. Effect of different phosphorus supply levels on rhizosphere microbial functional diversity of Medicago sativa[J]. Arid Zone Research, 2022, 39(5): 1496-1503.] | |
[42] |
朱瑞芬, 刘杰淋, 王建丽, 等. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 2020, 53(13): 2637-2646.
doi: 10.3864/j.issn.0578-1752.2020.13.012 |
[Zhu Ruifen, Liu Jielin, Wang Jianli, et al. Molecular ecological network analyses revealing the effects of nitrogen application on soil microbial community in the Degraded Grasslands[J]. Scientia Acricultura Sinica, 2020, 53(13): 2637-2646.]
doi: 10.3864/j.issn.0578-1752.2020.13.012 |
|
[43] | 林雅超, 高广磊, 丁国栋, 等. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化[J]. 生态学杂志, 2020, 39(5): 1445-1454. |
[Lin Yachao, Gao Guanglei, Ding Guodong, et al. Dynamics of soil physicochemical properties and microbial biomass in a Pinus sylvestris var. mongolica plantation[J]. Chinese Journal of Ecology, 2020, 39(5): 1445-1454.] | |
[44] |
韩翠, 康扬眉, 余海龙, 等. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812.
doi: 10.16258/j.cnki.1674-5906.2022.09.010 |
[Han Cui, Kang Yangmei, Yu Hailong, et al. Effects of precipitation on soil enzyme activities during litter decomposition in a desert steppe of northwestern China[J]. Ecology and Environmental Sciences, 2022, 31(9): 1802-1812.]
doi: 10.16258/j.cnki.1674-5906.2022.09.010 |
|
[45] | 于德良, 雷泽勇, 赵国军, 等. 土壤酶活性对沙地樟子松人工林衰退的响应[J]. 环境化学, 2019, 38(1): 97-105. |
[Yu Deliang, Lei Zeyong, Zhao Guojun, et al. Response of soil enzyme activity to the decline of Pinus sylvestris var. mongolica plantations on sand land[J]. Environmental Chemistry, 2019, 38(1): 97-105.] | |
[46] | 王学林, 高广磊, 丁国栋, 等. 沙地樟子松人工林土壤酶活性研究[J]. 干旱区资源与环境, 2021, 35(1): 114-120. |
[Wang Xuelin, Gao Guanglei, Ding Guodong, et al. Characteristics of soil enzyme activities of Pinus sylvestris var. mongolica plantations[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 114-120.] |
[1] | 董鹏, 任悦, 高广磊, 丁国栋, 张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征[J]. 干旱区研究, 2024, 41(8): 1354-1363. |
[2] | 包志鑫, 袁立敏, 武红燕, 鲁海涛, 韩照日格图. 呼伦贝尔草原风蚀坑植物分布空间异质效应[J]. 干旱区研究, 2024, 41(7): 1185-1194. |
[3] | 吴玮婷, 王雨, 高广磊, 张英, 丁国栋, 曹红雨. 土壤微生物膜对沙生植物幼苗光合和荧光特性的影响[J]. 干旱区研究, 2024, 41(2): 272-283. |
[4] | 王梓翔, 任悦, 鲁莹, 高广磊, 丁国栋, 张英. 干旱-复水对樟子松幼苗生理特征的影响[J]. 干旱区研究, 2024, 41(12): 2120-2131. |
[5] | 吉吉佳门, 程一本, 谌玲珑, 万鹏翔, 张祎晖, 杨文斌, 白旭赢, 王涛. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766. |
[6] | 张彤, 刘静, 韩叙, 童郁强, 魏亚伟. 放牧对沙地樟子松林土壤养分及微生物群落的影响[J]. 干旱区研究, 2023, 40(2): 194-202. |
[7] | 程谦, 塔依尔江·艾山, 玉米提·哈力克, 王新英. 塔里木河中游不同林龄胡杨活立木空心树特征[J]. 干旱区研究, 2023, 40(2): 247-256. |
[8] | 侍世玲,任晓萌,张晓伟,蒙仲举,王涛. 库布齐沙漠沙枣防护林土壤养分及化学计量特征[J]. 干旱区研究, 2022, 39(2): 469-476. |
[9] | 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1704-1712. |
[10] | 刘琳,熊东红,张宝军,袁勇,张闻多. 拉萨河谷杨树人工林枯落物蓄积特征及持水性能[J]. 干旱区研究, 2021, 38(6): 1674-1682. |
[11] | 王婷,李朝周,焦健,芝祥红. 不同生境芦苇根茎生长发育与根际微环境的比较研究[J]. 干旱区研究, 2021, 38(1): 233-240. |
[12] | 宗宁, 石培礼, 孙建. 高寒草地沙化过程植被与土壤特征变化的生态阈值估算[J]. 干旱区研究, 2020, 37(6): 1580-1589. |
[13] | 王京伟, 王磊元, 李 元, 牛文全. 覆膜滴灌对温室番茄土壤理化性状及其生物学特性的影响[J]. 干旱区研究, 2020, 37(4): 870-880. |
[14] | 于东伟, 雷泽勇, 赵国军, 张岩松, 于德良, 白津宁, 李尧. 樟子松固沙林土壤理化特性对林分密度的响应[J]. 干旱区研究, 2020, 37(1): 134-141. |
[15] | 王巍琦, 李变变, 张军, 杨磊, 张凤华. 干旱区不同类型盐碱土壤细菌群落多样性 [J]. 干旱区研究, 2019, 36(5): 1202-1211. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 556
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|