基于改进奖励机制的深度强化学习目标检测
作者:

Deep Reinforcement Learning for Object Detection Based on Improved Reward Mechanism
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高深度强化学习目标检测模型的检测精度和检测速度, 对传统模型进行改进. 针对特征提取不充分的问题, 使用融入通道注意力机制的VGG16特征提取模块作为强化学习的状态输入, 来更全面地捕获图像中的关键信息; 针对仅使用交并比作为奖励出现的评价不精准问题, 使用额外考虑了真实框与预测框中心点距离以及长宽比的改进奖励机制, 使奖励更加合理; 为加速训练过程的收敛并增强智能体对当前状态和动作评价的客观性, 使用Dueling DQN算法进行训练. 在PASCAL VOC2007和PASCAL VOC2012数据集上进行实验, 实验结果表明, 该检测模型仅需4–10个候选框即可检测到目标. 与Caicedo-RL相比, 准确率提高9.8%, 最终预测框和真实框的平均交并比提高5.6%.

    Abstract:

    To improve the detection accuracy and speed of deep reinforcement learning object detection models, modifications are made to traditional models. To address inadequate feature extraction, a VGG16 feature extraction module integrated with a channel attention mechanism is introduced as the state input for reinforcement learning, enabling a more comprehensive capture of key information in images. To address inaccurate evaluation caused by relying solely on the intersection over union as a reward, an improved reward mechanism that also considers the distance between the center points and the aspect ratio of the ground truth box and the predicted box is employed, making the reward more reasonable. To accelerate the convergence of the training process and enhance the objectivity of the agent’s evaluation of current states and actions, the Dueling DQN algorithm is used for training. After conducting experiments on the PASCAL VOC2007 and PASCAL VOC2012 datasets, experimental results show that the detection model only needs 4–10 candidate boxes to detect the target. Compared with Caicedo-RL, the accuracy is improved by 9.8%, and the mean intersection over union between the predicted and ground truth boxes is increased by 5.6%.

    参考文献
    [1] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110.
    [2] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005. 886–893.
    [3] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [4] Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015. 1440–1448.
    [5] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149.
    [6] He KM, Gkioxari G, Dollár P, et al. Mask R-CNN. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017. 2980–2988.
    [7] Cai ZW, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6154–6162.
    [8] Yang J, Wang LQ. Feature fusion and enhancement for single shot multibox detector. Proceedings of the 2019 Chinese Automation Congress (CAC). Hangzhou: IEEE, 2019. 2766–2770.
    [9] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 779–788.
    [10] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017. 2999–3007.
    [11] Caicedo JC, Lazebnik S. Active object localization with deep reinforcement learning. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015. 2488–2496.
    [12] Bellver M, Giró-i-Nieto X, Marqués F, et al. Hierarchical object detection with deep reinforcement learning. arXiv: 1611.03718, 2016.
    [13] Jie ZQ, Liang XD, Feng JS, et al. Tree-structured reinforcement learning for sequential object localization. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 127–135.
    [14] Xu N, Huo CL, Zhang X, et al. AHDet: A dynamic coarse-to-fine gaze strategy for active object detection. Neurocomputing, 2022, 491: 522–532.
    [15] Ayle M, Tekli J, El-Zini J, et al. Bar—A reinforcement learning agent for bounding-box automated refinement. Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020. 2561–2568.
    [16] König J, Malberg S, Martens M, et al. Multi-stage reinforcement learning for object detection. Proceedings of the 2019 Computer Vision Conference. Las Vegas: Springer, 2019. 178–191.
    [17] Zhou M, Wang RJ, Xie CJ, et al. ReinforceNet: A reinforcement learning embedded object detection framework with region selection network. Neurocomputing, 2021, 443: 369–379.
    [18] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
    [20] Wang ZY, Schaul T, Hessel M, et al. Dueling network architectures for deep reinforcement learning. Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016. 1995–2003.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈盈君,武月,刘力铭.基于改进奖励机制的深度强化学习目标检测.计算机系统应用,2024,33(10):106-114

复制
分享
文章指标
  • 点击次数:234
  • 下载次数: 1558
  • HTML阅读次数: 649
  • 引用次数: 0
历史
  • 收稿日期:2024-03-28
  • 最后修改日期:2024-05-06
  • 在线发布日期: 2024-08-28
文章二维码
您是第10652485位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号