基于单通道脑电信号的轻量级睡眠分析系统
作者:
基金项目:

广东省普通高校特色创新项目(2022KTSCX035); 国家自然科学基金面上项目(62076103)


Lightweight Sleep Analysis System Based on Single-channel EEG Signals
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在传统睡眠分期模型中, 由于计算资源要求高, 难以部署到有限计算能力的设备上. 本文开发了一个基于单通道脑电信号的轻量级睡眠分析系统, 该系统部署了GhostNet优化的GhostSleepNet神经网络模型, 实现了睡眠分期和睡眠质量评估的功能, 用户只需要使用脑环并连接至本系统即可在家庭环境下实现准确度高的睡眠分期. 其中, 卷积神经网络(convolutional neural network, CNN)负责提取高阶特征, GhostNet旨在保持 CNN 提取特征的准确性的同时, 减少模型参数以提高模型的计算效率, 门控循环单元(gated recurrent unit, GRU)则专注于捕捉睡眠数据的长期依赖关系与周期性变化. 本文对Sleep-EDF数据集的五分类任务进行验证, GhostSleepNet的睡眠分期准确率达到84.17%, 比传统睡眠分期模型低3%–5%, 但FLOPs仅为5 041 111 040, 计算复杂度下降20%–45%, 有助于移动设备睡眠分期功能的发展.

    Abstract:

    Traditional sleep staging models are difficult to deploy in devices with limited computing power due to high requirements of computational resources. In this study, a lightweight sleep analysis system based on single-channel EEG signals is developed, which deploys a GhostNet-optimized neural network model named GhostSleepNet to assess sleep staging and sleep quality. Users only need to use a brain loop and connect it to this system to achieve sleep staging with high accuracy in a home environment. In this system, convolutional neural networks (CNN) are responsible for extracting higher-order features, GhostNet is designed to maintain the accuracy of CNN extracted features while reducing the parameters of the model to improve the computational efficiency, and gated recurrent unit (GRU) focuses on capturing long-term dependencies and cyclic changes in sleep data. Verification of the five classification tasks on the Sleep-EDF dataset shows that the sleep staging accuracy of GhostSleepNet reaches 84.17%, which is 3%–5% lower than that of traditional sleep staging models. However, the number of FLOPs is only 5 041 111 040, and the computational complexity decreases by 20%–45%, contributing to the development of sleep staging for mobile devices.

    参考文献
    [1] Irwin MR. Why sleep is important for health: A psychoneuroimmunology perspective. Annual Review of Psychology, 2015, 66: 143–172.
    [2] Liu JB, Wu DP, Wang ZM, et al. Automatic sleep staging algorithm based on random forest and hidden Markov model. Computer Modeling in Engineering & Sciences, 2020, 123(1): 401–426.
    [3] Ghimatgar H, Kazemi K, Helfroush MS, et al. An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model. Journal of Neuroscience Methods, 2019, 324: 108320.
    [4] Yang BF, Zhu XL, Liu YT, et al. A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model. Biomedical Signal Processing and Control, 2021, 68: 102581.
    [5] Zhu TQ, Luo W, Yu F. Convolution- and attention-based neural network for automated sleep stage classification. International Journal of Environmental Research and Public Health, 2020, 17(11): 4152.
    [6] Han K, Wang YH, Tian Q, et al. GhostNet: More features from cheap operations. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 1577–1586.
    [7] Mollayeva T, Thurairajah P, Burton K, et al. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Medicine Reviews, 2016, 25: 52–73.
    [8] Sekkal RN, Bereksi-Reguig F, Ruiz-Fernandez D, et al. Automatic sleep stage classification: From classical machine learning methods to deep learning. Biomedical Signal Processing and Control, 2022, 77: 103751.
    [9] 缪竟鸿, 韩旭, Avouka T, 等. 基于单通道心电信号的家用睡眠分期方法. 天津工业大学学报, 2023, 42(4): 83–88.
    [10] Zhou DD, Xu Q, Wang J, et al. LightSleepNet: A lightweight deep model for rapid sleep stage classification with spectrograms. Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Mexico: IEEE, 2021. 43–46.
    [11] Jia ZY, Lin YF, Wang J, et al. GraphSleepNet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification. Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama: IJCAI, 2020. 1324–1330.
    [12] Jia ZY, Lin YF, Wang J, et al. SalientSleepNet: Multimodal salient wave detection network for sleep staging. Proceedings of the 30th International Joint Conference on Artificial Intelligence. Montreal: IJCAI, 2021. 2614–2620.
    [13] Mousavi S, Afghah F, Acharya UR. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS One, 2019, 14(5): e0216456.
    [14] Supratak A, Guo YK. TinySleepNet: An efficient deep learning model for sleep stage scoring based on raw single-channel EEG. Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020. 641–644.
    [15] Phan H, Andreotti F, Cooray N, et al. SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(3): 400–410.
    [16] Zhou HH, Liu AP, Cui H, et al. SleepNet-lite: A novel lightweight convolutional neural network for single-channel EEG-based sleep staging. IEEE Sensors Letters, 2023, 7(2): 7000804.
    [17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015.
    [18] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [19] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning. Lille: ICML, 2015. 448–456.
    [20] Berry RB, Brooks R, Gamaldo C, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specification. Westchester: American Academy of Sleep Medicine, 2007.
    [21] van Sweden B, Kemp B, Kamphuisen HAC, et al. Alternative electrode placement in (automatic) sleep scoring (Fpz-Cz/Pz-Oz versus C4-A1). Sleep, 1990, 13(3): 279–283.
    [22] Khirirat S, Feyzmahdavian HR, Johansson M. Mini-batch gradient descent: Faster convergence under data sparsity. Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC). Melbourne: IEEE, 2017. 2880–2887.
    [23] Fabbri M, Beracci A, Martoni M, et al. Measuring subjective sleep quality: A review. International Journal of Environmental Research and Public Health, 2021, 18(3): 1082.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李勉鑫,潘烨,黄申,邱镘霏,汤立仁,潘家辉.基于单通道脑电信号的轻量级睡眠分析系统.计算机系统应用,2024,33(10):115-123

复制
分享
文章指标
  • 点击次数:147
  • 下载次数: 1346
  • HTML阅读次数: 636
  • 引用次数: 0
历史
  • 收稿日期:2024-04-01
  • 最后修改日期:2024-04-29
  • 在线发布日期: 2024-08-21
文章二维码
您是第10652864位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号