-
三元砷锑化镓(GaAsSb)纳米线具有直接带隙电子结构, 通过调节锑含量可实现其近红外波段发光波长在870—1700 nm范围内的超宽带调谐, 在近红外微纳光学器件方面具有十分重要应用前景. 但由于高密度表面态的存在, 砷锑化镓纳米线室温发光效率低、难以观测, 这导致其光学性质研究主要集中在低温条件下, 严重阻碍了其室温条件下的光学性质的调控研究及器件化应用. 本文利用高压策略结合荧光光谱与拉曼光谱技术, 在室温条件下进行砷锑化镓纳米线光学性质的调控研究. 研究表明, 通过压力的施加, 在0—2.8 GPa的压力范围内, 砷锑化镓纳米线的室温荧光获得显著增强, 并且发光波长可以通过压力实现原位调控. 同时, 砷锑化镓纳米线的发光性质与激发光波长相关, 相对于473 nm激发光波长, 514 nm和633 nm波长对应的发光效率更高. 高压原位拉曼光谱研究表明, 短波长473 nm激光辐照砷锑化镓纳米线可以产生显著的光热效应, 抑制光发射, 而高压策略可以有效降低光热效应对于砷锑化镓纳米线光学性质的影响.Ternary GaAsSb nanowires (NWs) have considerable potential applications in infrared optical nanodevices due to their direct bandgap and wavelength-tunable light emission which covers the range from 870 nm to 1700 nm by changing the content of Sb in GaAsSb NWs. Due to the high surface state density, the light emission efficiency of GaAsSb NWs is quite low and the light emission is difficult to observe under room-temperature conditions. Previous studies on the optical properties of GaAsSb NWs were mainly carried out under low-temperature conditions, thereby limiting their room-temperature optical properties modulation research and room-temperature applications. In the present study, we modulate the optical properties of GaAsSb NWs under room-temperature conditions through the high-pressure strategy, by means of both photoluminescence (PL) and Raman spectroscopy. With the increase of pressure, the PL intensity of GaAsSb NWs is obviously enhanced at room temperature and the PL peak position shows a blue-shifted trend. With the change of wavelength (473 nm, 514 nm, and 633 nm) of the incident laser, the excitation-wavelength-dependent PL can be observed in GaAsSb NWs. The laser with a longer wavelength (633 nm) will excite the stronger light emission. The Raman spectra of GaAsSb NWs excited by different lasers (473 nm, 514 nm, and 633 nm) all show blue shift under compression. We select four pressure points (0.7 GPa, 1.2 GPa, 1.8 GPa, and 2.5 GPa) for the detailed comparison between the Raman spectra excited by different lasers. Under the excitation of 473 nm laser, the Raman peaks of GaAsSb NWs show an evident red-shift compared with those excited by 514 nm or 633 nm laser, which reveals the existence of temperature difference. The estimated relative temperature difference in GaAsSb NWs induced by two different lasers (473 nm and 633 nm) can reach up to 200 K. The laser with shorter wavelength will induce a stronger heating effect in GaAsSb NWs and reduce the light-emission efficiency. Under high-pressure condition, the charge transfer between the surface of GaAsSb NWs and pressure transmitting medium can be enhanced, which resulting in the reduction of surface state density and laser-heating effect. Therefore, the high-pressure strategy provides an efficient route for suppressing the high surface state density and optimizing optical properties of semiconductor nanostructures.
-
Keywords:
- GaAsSb /
- nanowire /
- high-pressure /
- room-temperature photoluminescence
1. Introduction
Due to the size effect, quasi-one-dimensional structure and high body surface area ratio, semiconductor nanowires can exhibit unique optical, electrical and mechanical physical properties different from their bulk materials[1,2].In the past few decades, researchers have carried out extensive studies on various types of semiconductor nanowires, revealing the potential of these special nano-semiconductor materials for a wide range of applications in the fields of sensors[3], solar cells[4,5], lasers[6,7] and photodetectors[8,9].Gallium arsenide (GaAs) based III-V semiconductors are ideal candidates for near-infrared optoelectronic devices because of their high photosensitivity and fast photoresponse in the near-infrared region.With the rapid development of synthesis technology, semiconductor nanowires have been synthesized with highly controlled size, morphology and element content[10–12]. At present, it is possible to successfully synthesize ternary gallium arsenide antimonide (GaAsSb) nanowires with nearly full composition of antimony element by molecular beam epitaxy[13].Due to the direct band gap electronic structure of the ternary GaAsSb nanowires, the luminescence wavelength range of the ternary GaAsSb nanowires can cover the whole near-infrared band of 870 — 1700 nm under the condition of different antimony content doping.Therefore, GaAsSb nanowires have important application prospects in near-infrared micro-nano optical devices.
However, due to the high density of surface States, the carrier recombination of III-V nanowires at room temperature is mainly surface non-radiative recombination, which greatly limits their luminous efficiency at room temperature. Therefore, the study of their optical properties is mainly focused on the[13,16] at low temperatures of 5-77 K, which seriously hinders the study of the control of their optical properties at room temperature and their application as micro-nano devices at room temperature. As one of the important thermodynamic parameters, pressure can reduce the distance between atoms, change the spatial arrangement of atoms and the distribution of atomic outer electron orbitals[17]. High pressure strategy is an efficient and environmentally friendly method to control the crystal and electronic structure of materials in situ without introducing impurity elements. Taking binary GaAs nanowires as an example, high pressure can induce structural phase transition, regulate band gap widening and metallization[18,19]. In addition, pressure can also enhance the interaction between nanomaterials and external medium, thus regulating the interfacial charge transfer behavior, suppressing surface non-radiative recombination and improving room temperature luminescence efficiency, which provides a feasible new way to study the room temperature optical properties of ternary III-V semiconductor nanowires.
As another typical thermodynamic parameter, temperature can affect the behavior of lattice thermal expansion and electron-phonon interaction in crystals. Using specific wavelength laser to irradiate semiconductor nanomaterials (such as GaAs[20,21], InAs[22], etc.) May induce thermal effect, resulting in temperature gradient on the surface of the sample, thus affecting the optical properties of the material. In this paper, the optical properties of GaAsSb nanowires at room temperature were controlled by high pressure strategy. The optical properties of GaAsSb nanowires under different wavelength laser excitation were studied in detail by Raman and fluorescence spectroscopy. It was found that the pressure could enhance the luminous efficiency of GaAsSb nanowires and induce the increase of band gap. It was also confirmed that the optical properties of GaAsSbnanowires were related to the excitation wavelength, and the short wavelength laser irradiation of nanowires could produce significant photothermal effects.
2. Experimental part
2.1 样品与仪器
实验所研究的GaAsSb三元纳米线是利用固体源分子束外延系统VG V80H在商用n型硅基底上生长制备的[13]. 首先, 将硅基底浸入稀释的含量为5% 的HF溶液中约30 s, 以便去除天然氧化层; 然后将衬底浸入体积比为4∶1的H2SO4和H2O2溶液中20 s, 使衬底表面覆盖一层新的氧化层; 最后用去离子水冲洗后通氮气流干燥. 在开始GaAsSb纳米线生长时, 首先提前10 min打开As快门以获得稳定的As通量, 然后同时打开Ga和Sb快门. Ga, As和Sb的通量分别为5.1×10–7, 4.5×10–6和2.2×10–6 mbar (1 bar = 105 Pa). 生长温度为590 ℃, 生长时间为1 h.
使用JEM F200系统中对GaAsSb纳米线的晶体结构进行高分辨透射电子显微镜表征, 利用附属于JEM-F200系统上的能谱仪对纳米线进行了EDS元素分析. 使用HORIBA LabRAM HR Evolution光谱仪(激发光波长为473 nm)和Renishaw in Via光谱仪(激发光波长为514 nm和633 nm)完成GaAsSb三元纳米线高压原位拉曼光谱测试和荧光光谱测试. 高压实验在金刚石对顶砧装置中完成, 如图1所示, 为金刚石对顶砧加压装置以及光学测试时样品腔的示意图. 实验中使用的金刚石砧面大小为400 μm, 高压实验所使用的垫片为T301钢片. 实验中的压力标定采用红宝石荧光标定法, 传压介质(PTM)为比例为4∶1的甲乙醇混合溶液.
2.2 实验过程
纳米线样品的压力加载是通过金刚石对顶砧装置来实现的. 首先将垫片厚度预压至60 μm左右, 在压痕中心利用激光打孔机打出直径约130 μm的孔作为样品腔. 随后将垫片进行复位. 在对纳米线高压光学性质研究中, 首先在样品腔放入少量GaAsSb纳米线, 并向腔中点入一颗直径约为20 μm的红宝石微球, 最后向样品腔中封入4∶1甲乙醇混合溶液作为传压介质, 完成装样. 实验中通过同时旋紧4个螺丝的方式加压. 进行光学测试时, 激光从上砧面的孔洞垂直射入样品腔, 同时样品腔内样品的光学信号沿原路返回, 实现信号接收, 完成测试. 为避免激光功率对测试结果的影响, 光谱测试中激光的功率都保持在2 mW左右.
3. 实验结果
3.1 材料的表征
图2(a)为GaAsSb三元纳米线的高分辨透射电子显微镜(HRTEM)图像, 插图为选区的电子衍射图. 图2(b)为高角度环形暗场(HAADF)成像. 图2(c)—(e)分别为GaAsSb三元纳米线中3种元素的成分分析结果. 结果表明, GaAsSb三元纳米线中Ga元素、As元素以及Sb元素的分布比较均匀. 透射电子显微镜的能谱测试表明, GaAsSb纳米线中Sb元素的含量在25%左右. 纳米线直径约为100 nm, 长度约为2 μm. 由透射电子显微镜结果和电子衍射结果可以看出样品为闪锌矿结构的GaAsSb三元纳米线.
图 2 (a) GaAsSb三元纳米线的高分辨率透射电子显微镜图像, 左下角为其电子衍射图; (b) GaAsSb三元纳米线的高角度环形暗场成像; (c)—(e) GaAsSb三元纳米线中Ga元素、As元素、Sb元素对应的伪彩色EDS映射图Fig. 2. (a) HRTEM image of GaAsSb nanowires (NWs) with the corresponding electron diffraction pattern image in left bottom; (b) HAADF image of GaAsSb NWs; (c)–(e) false color EDS maps of GaAsSb NWs with the Ga element, As element and Sb element3.2 高压下3种激发波长激发的荧光谱图
本文选取了473 nm, 514 nm和633 nm三种不同波长的激光作为激发光进行GaAsSb纳米线高压原位荧光光谱测试. 图3(a)所示为473 nm激光激发得到的高压原位荧光光谱. 可以看出, 在常压到1.9 GPa的压力区间内, 采集到的光谱信号信噪比很差, 难以观测到GaAsSb纳米线发光峰. 继续加压到2.5 GPa时, 才能观察到较弱的荧光信号. 图3(b)为波长514 nm激光激发高压原位荧光光谱. 可以看到, 在常压下难以观测到GaAsSb纳米线的荧光信号, 但是当压力增大到0.6 GPa 时, 可以观测到荧光峰出现, 并且随着压力继续增大, 荧光强度获得了显著的增强, 荧光峰位发生蓝移. 荧光增强说明纳米线表面非辐射复合受到了抑制, 而压致荧光峰蓝移说明随着压力增大GaAsSb纳米线的带隙获得了展宽. 如图3(c)所示, 也可以在波长633 nm激光激发高压原位荧光光谱中观测到压致荧光增强及蓝移的现象, 同时可以看到随着激发波长的增大, 相近压力下, GaAsSb纳米线的荧光信号呈现增强的趋势.
图4(a), (b)所示分别为514 nm和633 nm两种激发光条件下GaAsSb纳米线得到的荧光峰位与峰强随压力的变化趋势. 结合前人关于III-V族纳米线的高压研究结果及实验测试结果[23], 我们对荧光峰位与压力依赖关系进行线性拟合, 可以得到荧光峰位蓝移的压力系数分别为50.2 meV/GPa (514 nm激发)和41.4 meV/GPa (633 nm激发), 它们荧光峰的压力系数均明显小于GaAs纳米线[24]的99 meV/GPa. 这说明在GaAs晶格中引入具有更大原子质量及原子半径的锑原子可以显著影响其在高压下电子结构的演化行为.
图 4 在(a) 514 nm和(b) 633 nm两种不同波长激光激发下GaASbs纳米线的荧光峰峰位(左边Y轴)和强度(右边Y轴)随压力的变化情况, 其中黑色虚线是荧光峰位与压力的线性拟合结果Fig. 4. Pressure dependence of the PL emission position (left Y-axis) and intensity (right Y-axis) of GaAsSb nanowires with excitation wavelength of (a) 514 nm, (b) 633 nm. The dashed line represents the linear fit results between the PL emission position and pressure.由于高密度的表面态的存在, 常压条件下载流子非辐射复合会抑制砷化镓基纳米线的辐射复合即发光[25]. 因此, 在室温常压下利用不同波长激发GaAsSb纳米线均难以观测到其荧光信号. 而在本工作中, 在室温高压条件下, 利用473 nm, 514 nm及633 nm等 3种不同波长的光激发, GaAsSb纳米线荧光光谱均由难以观测变为可以观测, 并且在不同程度上呈现了压致增强的趋势, 这些实验结果证实了高压策略可以有效实现GaAsSb纳米线在室温条件下的光学性质研究. 在近期关于二元GaAs纳米线的高压原位荧光光谱研究中[24], 同样发现了压致荧光增强现象, 并通过理论研究证实压力诱导的纳米线发光增强与传压介质和纳米线表面之间的电荷转移高度相关. 施加压力可以直接减小纳米线及介质界面间的原子间距、诱导增强电荷转移等界面相互作用、降低表面态密度并抑制非辐射复合, 从而实现荧光增强. 但是值得注意的是, GaAsSb纳米线荧光强度与激发光波长相关, 尤其是在473 nm激光激发下, 其荧光强度显著减弱.
3.3 高压下3种激发波长激发的拉曼谱图
为进一步探究不同入射激发波长对于纳米线光学性质的影响, 我们在不同激发波长的条件下, 对GaAsSb纳米线进行了高压原位拉曼散射光谱测试. 图5(a)—(c)分别为在473 nm, 514 nm和633 nm三种波长条件下测得了GaAsSb纳米线的高压原位拉曼光谱. 图5(a)所示为入射波长为473 nm所激发GaAsSb纳米线升压过程的拉曼 光谱, 最高压力为3.3 GPa. 拉曼信号由类GaAs横光学模式(TO)拉曼峰和类GaAs纵光学模式(LO)拉曼峰组成. 拉曼光谱实验的初始压力为0.7 GPa, 在此压力点下, TO峰和LO峰的峰位分别位于261.7 cm–1和280.8 cm–1. 随着压力的升高, 由于晶格受到压缩, 诱导了声子能量增大, 两种模式的拉曼峰均表现出蓝移趋势. 图5(b), (c)分别为入射波长为514 nm和633 nm时, GaAsSb纳米线的高压原位拉曼光谱, 其测试压力与473 nm完全相同. 它们的拉曼光谱同样由TO模式和LO模式拉曼峰组成, 在0.7 GPa压力下, TO峰和LO峰的峰位分别位于264.2 cm–1 (514 nm)和281.1 cm–1 (514 nm), 以及264.9 cm–1 (633 nm)和282.2 cm–1 (633 nm), 633 nm 激发的拉曼光谱峰位值略高于514 nm, 均明显大于473 nm 所激发的拉曼峰位. 随着压力的升高, 514 nm和633 nm激发的TO和LO 拉曼峰的峰位都向更高波数方向移动, 呈蓝移趋势. 在加压过程中, 没有观测到新拉曼峰出现.
4. 讨论部分
为了细致比较光谱的差异, 我们选取了0.7 GPa, 1.2 GPa, 1.8 GPa及 2.5 GPa四个压力点, 分别对473 nm, 514 nm 和633 nm三个不同波长的入射激光所测得的拉曼光谱进行对比. 如图6所示, 在相同的压力条件下, 与473 nm激光激发得到的拉曼光谱相比, 随着激发光波长增大, 拉曼光谱的TO峰和LO峰的峰位均产生了相对蓝移的趋势. 我们将不同压力点3种波长入射光激发具体的TO拉曼峰位在表1中列出. 除了一些共振激发等特殊情况, 半导体材料的特征拉曼峰位不会随激发波长的变化而发生变化, 而温度及压力是可以直接影响特征拉曼峰位的移动. 在本工作中, 拉曼光谱测试是对于同一样品在完全相同压力下进行的, 同时也利用硅的一阶拉曼峰对光谱进行校正, 因此这种特征拉曼随激发波长的变化可能是来自于激光辐照后, GaAsSb纳米线表面载流子非辐射复合产生光热效应. 这种光热效应已在GaAs[20,21], InAs[22]等半导体材料的常压和高压光学性质研究中被观测到. 参考前人关于GaAs 纳米线的热效应研究工作, TO模式拉曼峰的峰位能够反映样品表面温度[26], 存在关于样品的TO峰拉曼波数与表面温度之间关系公式:
表 1 不同压力下由3种波长的激发光激发的拉曼峰的TO模式峰位.Table 1. The TO mode Raman peak positions stimulated by laser at different wavelengths under different pressures.TO/cm–1 0.7 GPa 1.2 GPa 1.8 GPa 2.5 GPa 473 nm 261.7 265.0 267.8 271.2 514 nm 264.2 267.2 269.7 272.5 633 nm 264.9 267.8 270.2 272.9 dvdT=0.016cm−1⋅K−1. (1) 因此可以通过计算两种波长的入射光辐照引起的GaAsSb纳米线TO拉曼峰的频率偏差来估算测试过程中纳米线表面的相对温度差的变化, 用来确定不同波长激发条件下的光热效应. 如图7所示, 波长越短的入射光辐照纳米线所产生表温度越高. 由473 nm激光辐照所产生温度显著高于514 nm或633 nm激光辐照, 相对温度差最高可达 200 K. 同时, 注意到随压力升高相对温度差逐渐减小, 因此推断可以利用高压策略降低表面态密度来抑制光热效应.
图8所示为在1.4 GPa, 1.8 GPa和2.5 GPa下由不同波长激光激发的荧光光谱. 在测试过程中已经采用相同功率(2 mW)来激发样品, 同时为了减小辐照区域样品密度和不同波长激光辐照载流子浓度差异带来的影响, 进一步利用TO模式拉曼峰的强度对PL光谱进行了归一化处理. 可以看出在3个压力点下, 随着波长的减小, 其荧光强度减弱, 尤其是由 473 nm激光激发得到的荧光强度明显弱于514 nm和633 nm激发, 这与通过拉曼光谱对比估算出的样品表面温度差的结果相一致. 相对于514 nm 和633 nm, 473 nm 可以引起更为强烈的光热效应, 而温度的提高可以进一步抑制GaAsSb纳米线表面的辐射效率(即温度猝灭效应). 随着压力的增大, 表面态密度减小, 导致荧光增强, 这与拉曼光谱研究所发现的光热效应随压力升高而受到抑制的实验现象相符. 高压增强了传压介质和纳米线表面之间的电荷转移, 对GaAsSb纳米线表面态产生了钝化效应, 抑制了表面非辐射复合及光热效应, 在这种条件下, GaAsSb纳米线表面辐射复合增强, 因此产生的光热效应也会被抑制, 导致不同波长辐照下样品表面的温度差逐渐变小.
5. 总 结
本文利用金刚石对顶砧加压装置, 通过荧光光谱与拉曼光谱技术, 在室温条件下研究了在不同波长入射光激发条件下GaAsSb纳米线光学性质. GaAsSb纳米线呈现了压力诱导的荧光增强现象, 同时其荧光强度也与激发波长相关. 在相同压力条件下, GaAsSb纳米线TO模式拉曼峰的频率也表现出了波长依赖性, 短波长的入射光会引起更显著的光热效应, 导致GaAsSb纳米线光致发光效率的进一步减弱. 压力的提高能够减少表面态密度, 抑制非辐射复合及光热效应, 这些均有利于提升GaAsSb纳米线的发光效率.
[1] Liu X, Gu L L, Zhang Q P, Wu J Y, Long Y Z, Fan Z Y 2014 Nat. Commun. 5 4007
Google Scholar
[2] Guo W, Zhang M, Banerjee A, Bhattacharya P 2010 Nano Lett. 10 3355
Google Scholar
[3] Cui Y, Wei Q Q, Park H K, Lieber C M 2001 Science 293 1289
Google Scholar
[4] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L, Lieber C M 2007 Nature 449 885
Google Scholar
[5] Nowzari A, Heurlin M, Jain V, Storm K, Hosseinnia A, Anttu N, Borgström M T, Pettersson H, Samuelson L 2015 Nano Lett. 15 1809
Google Scholar
[6] Zhang Q, Ha S T, Liu X F, Sum T C, Xiong Q H 2014 Nano Lett. 14 5995
Google Scholar
[7] Duan X F, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241
Google Scholar
[8] Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688
Google Scholar
[9] Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechno. 10 1430
Google Scholar
[10] Dick K A 2008 Prog. Cryst. Growth Ch. 54 138
Google Scholar
[11] Zhang L L, Li X, Cheng S B, Shan C X 2022 Materials 15 1917
Google Scholar
[12] Duan X, Wang J, Lieber C M 2000 Appl. Phys. Lett. 76 1116
Google Scholar
[13] Li L X, Pan D, Xue Y Z, Wang X L, Lin M L 2017 Nano Lett. 17 622
Google Scholar
[14] Li Z Y, Yuan X M, Gao Q, Yang I, Li L, Caroff P, Allen M, Allen J, Tan H H, Jagadish C, Fu L 2020 Nanotechnology 31 244002
Google Scholar
[15] Wang W, Yip S P, Meng Y, Wang W J, Wang F, Bu X M, Lai Z X, Kang X L, Xie P S, Quan Q, Liu C T, Ho J C 2021 Adv. Opt. Mater. 9 22
Google Scholar
[16] Zhuo R, Wen L J, Wang J, Dou X M, Liu L, Hou X Y, Liao D Y, Sun B Q, Pan D, Zhao J H 2024 Sci. China Phys. Mech. 67 127311
Google Scholar
[17] Chandrasekhar M, Pollak F H 1977 Phys. Rev. B 15 2127
Google Scholar
[18] Liang Y L, Yao Z, Yin X T, Wang P, Li L X, Pan D, Li H Y, Li Q J, Liu B B, Zhao J H 2019 Chin. Phys. B 28 076401
Google Scholar
[19] Zhou W, Chen X J, Zhang J B, Li X H, Wang Y Q, Goncharov A F 2014 Sci. Rep 4 6472
Google Scholar
[20] Yin X T, Liang Y L, Li L X, Liu S, Pan D, Wang P 2024 Nanotechnology 35 245702
Google Scholar
[21] Yazji S, Zardo I, Soini M, Postorino P, Morral A F I, Abstreiter G 2011 Nanotechnology 22 325701
Google Scholar
[22] Majumdar D, Ercolani D, Sorba L, Singha A 2016 J. Mater. Chem. C 4 2339
Google Scholar
[23] Zardo I, Yazji S, Marini C, Uccelli E, Morral A F I, Abstreiter G, Postorino P 2012 ACS Nano 6 3284
Google Scholar
[24] Ma L M, Wang P, Yin X T, Liang Y L, Liu S, Li L X, Pan D, Yao Z, Liu B B, Zhao J H 2020 Nanoscale Adv. 2 2558
Google Scholar
[25] Chang C C, Chi C Y, Yao M Q, Huang N F, Chen C C, Theiss J, Bushmaker A W, LaLumondiere S, Yeh T W, Povinelli M L, Zhou C W, Dapkus P D, Cronin S B 2012 Nano Lett. 12 4484
Google Scholar
[26] Soini M, Zardo I, Uccelli E, Funk S, Koblmuller G, Morral A F I, Abstreiter G 2010 Appl. Phys. Lett. 97 263107
Google Scholar
-
图 2 (a) GaAsSb三元纳米线的高分辨率透射电子显微镜图像, 左下角为其电子衍射图; (b) GaAsSb三元纳米线的高角度环形暗场成像; (c)—(e) GaAsSb三元纳米线中Ga元素、As元素、Sb元素对应的伪彩色EDS映射图
Fig. 2. (a) HRTEM image of GaAsSb nanowires (NWs) with the corresponding electron diffraction pattern image in left bottom; (b) HAADF image of GaAsSb NWs; (c)–(e) false color EDS maps of GaAsSb NWs with the Ga element, As element and Sb element
图 4 在(a) 514 nm和(b) 633 nm两种不同波长激光激发下GaASbs纳米线的荧光峰峰位(左边Y轴)和强度(右边Y轴)随压力的变化情况, 其中黑色虚线是荧光峰位与压力的线性拟合结果
Fig. 4. Pressure dependence of the PL emission position (left Y-axis) and intensity (right Y-axis) of GaAsSb nanowires with excitation wavelength of (a) 514 nm, (b) 633 nm. The dashed line represents the linear fit results between the PL emission position and pressure.
表 1 不同压力下由3种波长的激发光激发的拉曼峰的TO模式峰位.
Table 1. The TO mode Raman peak positions stimulated by laser at different wavelengths under different pressures.
TO/cm–1 0.7 GPa 1.2 GPa 1.8 GPa 2.5 GPa 473 nm 261.7 265.0 267.8 271.2 514 nm 264.2 267.2 269.7 272.5 633 nm 264.9 267.8 270.2 272.9 -
[1] Liu X, Gu L L, Zhang Q P, Wu J Y, Long Y Z, Fan Z Y 2014 Nat. Commun. 5 4007
Google Scholar
[2] Guo W, Zhang M, Banerjee A, Bhattacharya P 2010 Nano Lett. 10 3355
Google Scholar
[3] Cui Y, Wei Q Q, Park H K, Lieber C M 2001 Science 293 1289
Google Scholar
[4] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L, Lieber C M 2007 Nature 449 885
Google Scholar
[5] Nowzari A, Heurlin M, Jain V, Storm K, Hosseinnia A, Anttu N, Borgström M T, Pettersson H, Samuelson L 2015 Nano Lett. 15 1809
Google Scholar
[6] Zhang Q, Ha S T, Liu X F, Sum T C, Xiong Q H 2014 Nano Lett. 14 5995
Google Scholar
[7] Duan X F, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241
Google Scholar
[8] Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688
Google Scholar
[9] Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechno. 10 1430
Google Scholar
[10] Dick K A 2008 Prog. Cryst. Growth Ch. 54 138
Google Scholar
[11] Zhang L L, Li X, Cheng S B, Shan C X 2022 Materials 15 1917
Google Scholar
[12] Duan X, Wang J, Lieber C M 2000 Appl. Phys. Lett. 76 1116
Google Scholar
[13] Li L X, Pan D, Xue Y Z, Wang X L, Lin M L 2017 Nano Lett. 17 622
Google Scholar
[14] Li Z Y, Yuan X M, Gao Q, Yang I, Li L, Caroff P, Allen M, Allen J, Tan H H, Jagadish C, Fu L 2020 Nanotechnology 31 244002
Google Scholar
[15] Wang W, Yip S P, Meng Y, Wang W J, Wang F, Bu X M, Lai Z X, Kang X L, Xie P S, Quan Q, Liu C T, Ho J C 2021 Adv. Opt. Mater. 9 22
Google Scholar
[16] Zhuo R, Wen L J, Wang J, Dou X M, Liu L, Hou X Y, Liao D Y, Sun B Q, Pan D, Zhao J H 2024 Sci. China Phys. Mech. 67 127311
Google Scholar
[17] Chandrasekhar M, Pollak F H 1977 Phys. Rev. B 15 2127
Google Scholar
[18] Liang Y L, Yao Z, Yin X T, Wang P, Li L X, Pan D, Li H Y, Li Q J, Liu B B, Zhao J H 2019 Chin. Phys. B 28 076401
Google Scholar
[19] Zhou W, Chen X J, Zhang J B, Li X H, Wang Y Q, Goncharov A F 2014 Sci. Rep 4 6472
Google Scholar
[20] Yin X T, Liang Y L, Li L X, Liu S, Pan D, Wang P 2024 Nanotechnology 35 245702
Google Scholar
[21] Yazji S, Zardo I, Soini M, Postorino P, Morral A F I, Abstreiter G 2011 Nanotechnology 22 325701
Google Scholar
[22] Majumdar D, Ercolani D, Sorba L, Singha A 2016 J. Mater. Chem. C 4 2339
Google Scholar
[23] Zardo I, Yazji S, Marini C, Uccelli E, Morral A F I, Abstreiter G, Postorino P 2012 ACS Nano 6 3284
Google Scholar
[24] Ma L M, Wang P, Yin X T, Liang Y L, Liu S, Li L X, Pan D, Yao Z, Liu B B, Zhao J H 2020 Nanoscale Adv. 2 2558
Google Scholar
[25] Chang C C, Chi C Y, Yao M Q, Huang N F, Chen C C, Theiss J, Bushmaker A W, LaLumondiere S, Yeh T W, Povinelli M L, Zhou C W, Dapkus P D, Cronin S B 2012 Nano Lett. 12 4484
Google Scholar
[26] Soini M, Zardo I, Uccelli E, Funk S, Koblmuller G, Morral A F I, Abstreiter G 2010 Appl. Phys. Lett. 97 263107
Google Scholar
计量
- 文章访问数: 984
- PDF下载量: 86