心理科学进展 ›› 2025, Vol. 33 ›› Issue (2): 191-201.doi: 10.3724/SP.J.1042.2025.0191 cstr: 32111.14.2025.0191
• 研究构想 • 下一篇
收稿日期:
2024-08-01
出版日期:
2025-02-15
发布日期:
2024-12-06
通讯作者:
杨环瑜, E-mail: 1320961328@qq.com基金资助:
PAN Yun2,3, YANG Huanyu1,2(), ZHU Jun2, JIA Liangzhi2
Received:
2024-08-01
Online:
2025-02-15
Published:
2024-12-06
摘要:
分组化作为数量感知重要策略之一, 具有感数和计数的特征, 影响个体的算术能力。尽管已有研究表明知觉分组与数量感知有着密切的联系, 但多从空间或时间各自单向关系考察数量感知的分组化现象, 忽视了知觉分组的内外部线索以及共享相同量级系统的空间、时间和运动维度在数量感知分组化策略中产生的作用, 且分组化策略的心理−生理机制迄今尚不清楚。在前期研究基础上, 本研究以知觉分组为切入点, 拟综合采用行为测量、ERP、fMRI等技术, 系统探讨不同量级系统维度对数量感知分组化策略影响的认知机制及神经基础, 深入揭示知觉分组在数量感知分组化形成中的作用, 以期更系统地回答数量感知分组化策略的实质及其心理−生理机制, 为实现高效率数学学习提供依据。
中图分类号:
潘运, 杨环瑜, 朱俊, 贾良智. (2025). 数量感知分组化策略的认知机制及神经基础. 心理科学进展 , 33(2), 191-201.
PAN Yun, YANG Huanyu, ZHU Jun, JIA Liangzhi. (2025). Cognitive mechanism and neural basis of groupitizing strategies in numerosity perception. Advances in Psychological Science, 33(2), 191-201.
[1] | 戴隆农, 潘运. (2021). 数字-空间联结的内在机制: 基于工作记忆的视角. 心理科学, 44(4), 793-799. |
[2] | 兰哲, 陈霖. (1998). 拓扑性质知觉的大脑半球功能不对称性研究. 心理科学, 21(3), 205-208. |
[3] | 刘炜, 张智君, 赵亚军. (2012). 基于数量感知的数量适应. 心理学报, 44(10), 1297-1308. |
[4] | 徐继红, 司继伟, 周新林, 董奇. (2010). 数量估计的研究回顾. 心理科学, 33(3), 646-648. |
[5] | 张真, 苏彦捷. (2007). 人类数能力的演化基础——数能力比较研究的启示. 心理科学进展, 15(1), 57-63. |
[6] | 朱滢. (2005). 陈霖的拓扑性质知觉理论. 心理科学, 28(5), 1031-1034. |
[7] | Anobile, G., Arrighi, R., Castaldi, E., & Burr, D. C. (2021a). A sensorimotor numerosity system. Trends in Cognitive Sciences, 25(1), 24-36. |
[8] | Anobile, G., Arrighi, R., Togoli, I., & Burr, D. C. (2016). A shared numerical representation for action and perception. Elife, 5, e16161. |
[9] | Anobile, G., Castaldi, E., Maldonado Moscoso, P. A., Arrighi, R., & Burr, D. (2021b). Groupitizing improves estimation of numerosity of auditory sequences. Frontiers in Human Neuroscience, 15, 339. |
[10] | Anobile, G., Castaldi, E., Moscoso, P. A. M., Burr, D. C., & Arrighi, R. (2020a). “Groupitizing”: A strategy for numerosity estimation. Scientific Reports, 10(1), 13436. |
[11] | Anobile, G., Domenici, N., Togoli, I., Burr, D., & Arrighi, R. (2020b). Distortions of visual time induced by motor adaptation. Journal of Experimental Psychology: General, 149(7), 1333-1343. |
[12] | Barlow, H., & HILL, R. (1964). Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature, 200, 1345-1347. |
[13] |
Burr, D., Anobile, G., Castaldi, E., & Arrighi, R. (2021). Numbers in action. Behavioral and Brain Sciences, 44, e185.
doi: 10.1017/S0140525X21000996 pmid: 34907873 |
[14] |
Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425-428.
doi: 10.1016/j.cub.2008.02.052 pmid: 18342507 |
[15] | Cai, Y., Hofstetter, S., Harvey, B. M., & Dumoulin, S. O. (2022). Attention drives human numerosity-selective responses. Cell Reports, 39(13), 111005. |
[16] | Caponi, C., Maldonado, M. P., Castaldi, E., Arrighi, R., & Grasso, P. A. (2023). EEG signature of grouping strategies in numerosity perception. Frontiers in Neuroscience, 17, 1190317. |
[17] | Cheng, X., Lin, C., Lou, C., Zhang, W., Han, Y., Ding, X., & Fan, Z. (2021). Small numerosity advantage for sequential enumeration on RSVP stimuli: An object individuation- based account. Psychological Research, 85(2), 734-763. |
[18] | Cicchini, G. M., Anobile, G., Burr, D. C., Marchesini, P., & Arrighi, R. (2023). The role of non-numerical information in the perception of temporal numerosity. Frontiers in Psychology, 14, 1197064. |
[19] | Ciccione, L., & Dehaene, S. (2020). Grouping mechanisms in numerosity perception. Open Mind, 4, 102-118. |
[20] |
Czarnecka, M., Rączy, K., Szewczyk, J., Paplińska, M., Jednoróg, K., Marchewka, A., ... Szwed, M. (2023). Overlapping but separate number representations in the intraparietal sulcus—Probing format- and modality- independence in sighted Braille readers. Cortex, 162, 65-80.
doi: 10.1016/j.cortex.2023.01.011 pmid: 37003099 |
[21] | de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 4809-4813. |
[22] |
Dehaene, S., & Changeux, J. (1993). Development of Elementary Numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5(4), 390-407.
doi: 10.1162/jocn.1993.5.4.390 pmid: 23964915 |
[23] |
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355-361.
pmid: 9720604 |
[24] |
Elder, J. H., Oleskiw, T. D., & Fruend, I. (2018). The role of global cues in the perceptual grouping of natural shapes. Journal of Vision, 18(12), 14.
doi: 10.1167/18.12.14 pmid: 30458519 |
[25] |
Fornaciai, M., Togoli, I., & Arrighi, R. (2018). Motion- induced compression of perceived numerosity. Scientific Reports, 8(1), 6966.
doi: 10.1038/s41598-018-25244-8 pmid: 29725026 |
[26] | Grasso, P. A., Anobile, G., Arrighi, R., Burr, D. C., & Cicchini, G. M. (2022). Numerosity perception is tuned to salient environmental features. iScience, 25(4), 104104. |
[27] |
Guillaume, M., Roy, E., Van Rinsveld, A., Starkey, G., Uncapher, M., & Mccandliss, B. (2022). Groupitizing reflects conceptual developments in math cognition and inequities in math achievement from childhood through adolescence. Child Development, 94(2), 335-347.
doi: 10.1111/cdev.13859 pmid: 36484357 |
[28] |
Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123-1126.
doi: 10.1126/science.1239052 pmid: 24009396 |
[29] | Hayden, A., Bhatt, R., & Quinn, P. (2006). Infants’ sensitivity to uniform connectedness as a cue for perceptual organization. Psychonomic Bulletin & Review, 13(2), 257-261. |
[30] | He, L., Zhang, J., Zhou, T., & Chen, L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin & Review, 16(3), 509-517. |
[31] | He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5647-E5655. |
[32] |
Hubbard, E., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature reviews. Neuroscience, 6, 435-448.
pmid: 15928716 |
[33] | Humphreys, G. W., & Riddoch, J. (1993). Interactions between object and space systems revealed through neuropsychology. Attention and Performance, 14, 143-162. |
[34] |
Luna, D., Villalba-Garcia, C., Montoro, P. R., & Hinojosa, J. A. (2016). Dominance dynamics of competition between intrinsic and extrinsic grouping cues. Acta Psychologica, 170, 146-154.
doi: 10.1016/j.actpsy.2016.07.001 pmid: 27423888 |
[35] | Maldonado Moscoso, P. A., Castaldi, E., Burr, D. C., Arrighi, R., & Anobile, G. (2020). Grouping strategies in number estimation extend the subitizing range. Scientific Reports, 10(1), 14979. |
[36] |
Maldonado, M. P., Greenlee, M. W., Anobile, G., Arrighi, R., Burr, D. C., & Castaldi, E. (2021). Groupitizing modifies neural coding of numerosity. Human Brain Mapping, 43(3), 915-928.
doi: 10.1002/hbm.25694 pmid: 34877718 |
[37] |
Malone, S. A., Pritchard, V. E., Heron-Delaney, M., Burgoyne, K., Lervåg, A., & Hulme, C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184, 220-231.
doi: S0022-0965(18)30141-3 pmid: 30935590 |
[38] | Montoro, P. R., Villalba-García, C., Luna, D., & Hinojosa, J. A. (2017). Common region wins the competition between extrinsic grouping cues: Evidence from a task without explicit attention to grouping. Psychonomic Bulletin & Review, 24(6), 1856-1861. |
[39] |
Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. Cognitive Psychology, 24(3), 436-447.
pmid: 1516361 |
[40] | Palmer, S. E., & Beck, D. M. (2007). The repetition discrimination task: An objective method for studying perceptual grouping. Perception & Psychophysics, 69(1), 68-78. |
[41] | Palmer, S., & Rock, I. (1994). On the nature and order of organizational processing: A reply to Peterson. Psychonomic Bulletin & Review, 1(4), 515-519. |
[42] |
Pan, Y., Yang, H., Li, M., Zhang, J., & Cui, L. (2021). Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues. Scientific Reports, 11(1), 17605.
doi: 10.1038/s41598-021-96944-x pmid: 34475472 |
[43] |
Pennock, I. M. L., Schmidt, T. T., Zorbek, D., & Blankenburg, F. (2021). Representation of visual numerosity information during working memory in humans: An fMRI decoding study. Human Brain Mapping, 42(9), 2778-2789.
doi: 10.1002/hbm.25402 pmid: 33694232 |
[44] |
Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435-446.
pmid: 11798277 |
[45] |
Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. Neuroscientist, 15(3), 261-273.
doi: 10.1177/1073858409333073 pmid: 19436075 |
[46] |
Revkin, S., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607-614.
doi: 10.1111/j.1467-9280.2008.02130.x pmid: 18578852 |
[47] |
Simon, O., Mangin, J., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475-487.
pmid: 11832233 |
[48] | Simon, T., & Vaishnavi, S. (1996). Subitizing and counting depend on different attentional mechanisms: Evidence from visual enumeration in afterimages. Perception & Psychophysics, 58, 915-926. |
[49] | Soltész, F., Szucs, D., & Szucs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1), 13. |
[50] | Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition. Journal of Experimental Child Psychology, 126, 120-137. |
[51] | Thompson, P., & Burr, D. (2009). Visual aftereffects. Current Biology, 19(1), R11-R14. |
[52] |
Togoli, I., Crollen, V., Arrighi, R., & Collignon, O. (2020). The shared numerical representation for action and perception develops independently from vision. Cortex, 129, 436-445.
doi: S0010-9452(20)30191-X pmid: 32580065 |
[53] | Tsouli, A., Harvey, B. M., Hofstetter, S., Cai, Y., van der Smagt, M. J., Te, P. S., & Dumoulin, S. O. (2022). The role of neural tuning in quantity perception. Trends in Cognitive Sciences, 26(1), 11-24. |
[54] |
Tudusciuc, O., & Nieder, A. (2007). Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(36), 14513-14518.
doi: 10.1073/pnas.0705495104 pmid: 17724337 |
[55] |
Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6), 1172-1217.
doi: 10.1037/a0029333 pmid: 22845751 |
[56] |
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488.
doi: 10.1016/j.tics.2003.09.002 pmid: 14585444 |
[57] | Wege, T., Trezise, K., & Inglis, M. (2021). Finding the subitizing in groupitizing: Evidence for parallel subitizing of dots and groups in grouped arrays. Psychonomic Bulletin & Review, 29, 476-484. |
[58] | Wender, K., & Rothkegel, R. (2000). Subitizing and its subprocesses. Psychological research, 64(2), 81-92. |
[59] | Whalen, J., Gallistel, C. R., & Gelman, R. (2016). Nonverbal Counting in Humans: The Psychophysics of Number Representation. Psychological Science, 10(2), 130-137. |
[60] | Zhang, D., Zhou, L., Yang, A., Li, S., Chang, C., Liu, J., & Zhou, K. (2023). A connectome-based neuromarker of nonverbal number acuity and arithmetic skills. Cerebral Cortex, 33(3), 881-894. |
[61] | Zorzi, M., Stoianov, I., & Umiltà, C. (2005). Computational modeling of numerical cognition. Handbook of Mathematical Cognition, 5, 67-84. |
[1] | 车强燕, 孙韵琳, 靳佳, 朱春燕, 汪凯, 叶榕, 余凤琼. 神经反馈增强积极情绪在抑郁症治疗中的应用[J]. 心理科学进展, 2024, 32(2): 342-363. |
[2] | 周广方, 金花. 精准功能磁共振成像揭示个体化脑功能网络组织[J]. 心理科学进展, 2023, 31(11): 2078-2091. |
[3] | 高青林, 周媛. 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度[J]. 心理科学进展, 2021, 29(1): 178-189. |
[4] | 王一丹, 何生, 张杰栋. 基于降维分析的人类面孔加工脑区的细分[J]. 心理科学进展, 2019, 27(suppl.): 161-161. |
[5] | 魏柳青, 张学民. 多目标追踪的神经机制[J]. 心理科学进展, 2019, 27(12): 2007-2018. |
[6] | 段凯凯, 董昊铭, 苗丽雯, 苏学权, 相洁, 左西年. 人脑自适应多尺度功能连接的性别差异[J]. 心理科学进展, 2018, 26(9): 1567-1575. |
[7] | 李雅; 李晟. 轮廓整合的时空动态加工机制[J]. 心理科学进展, 2016, 24(Suppl.): 60-. |
[8] | 张芬;王穗苹;杨娟华;冯刚毅. 自闭症谱系障碍者异常的大脑功能连接[J]. 心理科学进展, 2015, 23(7): 1196-1204. |
[9] | 程凯;曹贵康. 走神的理论假设、影响因素及其神经机制[J]. 心理科学进展, 2014, 22(9): 1435-1445. |
[10] | 魏萍;康冠兰. 奖赏性线索启动和调控视觉搜索额顶网络的神经机制[J]. 心理科学进展, 2012, 20(6): 798-804. |
[11] | 魏萍;周晓林. 任务维度和任务无关维度干扰信息的同质性影响视觉搜索的神经机制[J]. 心理科学进展, 2011, 19(6): 794-802. |
[12] | 杨苏勇; 黄宇霞; 张慧君; 罗跃嘉. 情绪影响行为抑制的脑机制[J]. 心理科学进展, 2010, 18(4): 605-615. |
[13] | 张小将; 刘昌; 刘迎杰. 演绎推理是基于规则还是模型?——来自空间推理的证据[J]. 心理科学进展, 2010, 18(2): 237-243. |
[14] | 雷威;杨志;詹旻野;李红;翁旭初. 利用脑成像多体素模式分析解码认知的神经表征:原理和应用[J]. 心理科学进展, 2010, 18(12): 1934-1941. |
[15] | 张小将;刘昌;刘迎杰. 一般流体智力的脑成像研究述评[J]. 心理科学进展, 2009, 17(2): 349-355. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 812
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 696
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||