Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 271-279     CSTR: 32134.14.1005.4537.2022.069      DOI: 10.11902/1005.4537.2022.069
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能
贺南开1,2, 王永欣1(), 周升国2, 周大朋1, 李金龙1
1.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
2.江西理工大学材料科学与工程学院 赣州 341000
Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy
HE Nankai1,2, WANG Yongxin1(), ZHOU Shengguo2, ZHOU Dapeng1, LI Jinlong1
1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2.School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
全文: PDF(16255 KB)   HTML
摘要: 

通过高温氧化和高温摩擦试验研究了Inconel 718合金在580 ℃动态纯水蒸气环境中的氧化行为及高温摩擦学性能。结果表明:Inconel 718合金在580 ℃动态纯水蒸气环境中的氧化动力学曲线遵循两阶段直线规律;与在干燥空气中不同,Inconel 718合金在高温水蒸气中获得的氧化产物粗大,且有网状裂纹存在,但二者成分类似,主要由NiFe2O4和少量的NiO,Cr2O3和Fe2O3组成。随摩擦载荷增加,Inconel 718合金在580 ℃时的摩擦系数逐渐减小,而磨损率逐渐增加;其在2 N载荷下的磨损机制主要为粘着磨损,而在高于5 N载荷下的磨损机制主要为疲劳磨损和磨粒磨损。

关键词 Inconel718合金纯水蒸气高温氧化高温摩擦磨损机制    
Abstract

The oxidation behavior of Inconel 718 alloy in flowing water vapor and the wear performance in atmosphere of 60% relative humidity at 580 ℃ were investigated respectively via tubular furnace with an adjustable steam supply unit and a ball-disc type high temperature friction and wear tester. The results showed that the oxidation kinetic curves of Inconel 718 alloy in flowing water vapor at 580 ℃ followed a double linear law approximately. In comparison to those formed in dry air, the oxidation products formed in high-temperature water vapor were coarse with network-like cracks. However, the composition of oxidation products formed in water vapor and dry air were more or less the same, which all composed mainly of NiFe2O4 and small amount of NiO, Cr2O3, and Fe2O3. Beneath the oxide scale, a Cr-depletion region was found. On the other hand, the friction coefficient of Inconel 718 alloy decreased at 580 ℃ with the increase of friction load, while the wear rate increased gradually. The wear mechanism of Inconel 718 alloy by 2 N was mainly adhesive wear, while the wear mechanism was mainly fatigue wear and abrasive wear above 5 N.

Key wordsInconel 718 alloy    pure water vapor    high-temperature oxidation    high-temperature friction    wear mechanism
收稿日期: 2022-03-11      32134.14.1005.4537.2022.069
ZTFLH:  TG174  
基金资助:国家重点研发计划(2020YFB2010401);中国科学院青年创新促进会项目(2018336)
作者简介: 贺南开,男,1996年生,硕士生

引用本文:

贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
Nankai HE, Yongxin WANG, Shengguo ZHOU, Dapeng ZHOU, Jinlong LI. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 271-279.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.069      或      https://www.jcscp.org/CN/Y2023/V43/I2/271

图1  Inconel 718合金在不同条件下氧化不同时长的氧化膜的宏观形貌和氧化动力学曲线
图2  Inconel 718合金在不同条件下氧化168 h前后的表面和截面形貌
图3  Inconel 718合金初始态及其在不同条件下氧化168 h后的截面形貌和元素分布
图4  Inconel 718合金在不同条件下氧化168 h后的氧化产物的拉曼图
图5  Inconel 718合金在高温水蒸气中的氧化机理示意图
图6  Inconel 718合金在不同载荷下的摩擦系数和磨损率
图7  Inconel 718合金在不同载荷下的磨痕、磨斑形貌及磨痕的3D形貌和二维轮廓图
图8  Inconel 718合金在不同载荷下的磨痕和磨屑形貌
SpectrumOAlCrFeNiNbMo
19.080.3218.0017.0247.714.902.96
217.280.3816.1216.3743.093.982.78
315.320.4818.4915.2542.015.263.19
422.630.5416.0314.7539.344.022.69
表1  Inconel 718合金在不同载荷下磨痕表面的主要元素
[1] Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
[1] (焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417)
[2] Liu H L, Liu X H, Ji L, et al. Wide temperature range tribological property of inconel 718 high-temperature alloy [J]. Tribology, 2018, 38: 274
[2] (刘红利, 刘晓红, 吉利 等. 高温氧化处理前后Inconel 718高温合金摩擦学性能的探究 [J]. 摩擦学学报, 2018, 38: 274)
[3] Zhang Z Y, Wu X Q, Han E-H, et al. A review on corrosion fatigue crack growth behavior of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 9
[3] (张兹瑜, 吴欣强, 韩恩厚 等. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 9)
[4] Li S H, Ba J Z, Jiang Y X, et al. A research progress of high temperature oxidation behaviors in IN 718 [J]. Chem. Def. Ships, 2008, (2): 8
[4] (李少华, 巴俊洲, 蒋亚雄 等. IN718合金高温氧化行为的研究进展 [J]. 舰船防化, 2008, (2): 8)
[5] Deng W K, Xu J H, Jiang L. Thermo-mechanical fatigue behavior of Inconel 718 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 983
[5] (邓文凯, 徐睛昊, 江亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019, 29: 983)
[6] Lou X M, Sun W R, Guo S R, et al. Hot Corrosion Behavior of IN 718 alloy and its effect on mechanical properties [J]. Rare Met. Mater. Eng., 2008, 37: 259
[6] (娄学明, 孙文儒, 郭守仁 等. IN718高温合金热腐蚀行为及其对力学性能的影响 [J]. 稀有金属材料与工程, 2008, 37: 259)
[7] Geng Y X, Dong X, Wang K D, et al. Effect of microstructure evolution and phase precipitations on hot corrosion behavior of IN718 alloy subjected to multiple laser shock peening [J]. Surf. Coat. Technol., 2019, 370: 244
doi: 10.1016/j.surfcoat.2019.04.060
[8] Xia X J, Cai J B, Lin D Y, et al. Corrosion status, corrosion mechanisms and anti-corrosion measures in coastal substations [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 697
[8] (夏晓健, 蔡建宾, 林德源 等. 沿海变电站设备腐蚀状况及其腐蚀机理与防护 [J]. 中国腐蚀与防护学报, 2021, 41: 697)
[9] Cui T C, Leng W C, Zhou D P, et al. Improved hot corrosion resistance of Al-gradient NiSiAlY coatings at 750 ℃ by pre-oxidation [J]. Surf. Coat. Technol., 2021, 417: 127
[10] Li R Z, Wang S H, Zhou D P, et al. A new insight into the NaCl-induced hot corrosion mechanism of TiN coatings at 500 °C [J]. Corros. Sci., 2020, 174: 108794
doi: 10.1016/j.corsci.2020.108794
[11] Sha C H, Zhou Z F, Xie Z H, et al. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance [J]. Appl. Surf. Sci., 2020, 507: 145101
doi: 10.1016/j.apsusc.2019.145101
[12] Pradhan D, Shankar Mahobia G, Chattopadhyay K, et al. Salt induced corrosion behaviour of superalloy IN718 [J]. Mater. Today Proc., 2018, 5: 7047
[13] Fang X D, Liu X, Xu F H, et al. Oxidation behavior in supercritical water of domestic austenitic steel C-HRA-5 for uultra-supercritical power stations [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 266
[13] (方旭东, 刘晓, 徐芳泓 等. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 266)
[14] Xie D B, Zhou Y Y, Lu J T, et al. Effect of Cr content on oxidation of Ni-based alloy in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 358
[14] (谢冬柏, 周游宇, 鲁金涛 等. Cr对镍基合金在超临界水中氧化行为的影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 358)
[15] Grosvenor A P, Kobe B A, McIntyre N S. Activation energies for the oxidation of iron by oxygen gas and water vapour [J]. Surf. Sci., 2005, 574: 317
doi: 10.1016/j.susc.2004.10.043
[16] Berthod P, Aranda L, Mathieu S, et al. Influence of water vapour on the rate of oxidation of a Ni-25wt.%Cr alloy at high temperature [J]. Oxid. Met., 2013, 79: 517
doi: 10.1007/s11085-012-9339-x
[17] Kurzynowski T, Smolina I, Kobiela K, et al. Wear and corrosion behaviour of Inconel 718 laser surface alloyed with rhenium [J]. Mater. Des., 2017, 132: 349
doi: 10.1016/j.matdes.2017.07.024
[18] Renderos M, Torregaray A, Gutierrez-orrantia M E, et al. Microstructure characterization of recycled IN718 powder and resulting laser clad material [J]. Mater. Characterizat., 2017, 134: 103
[19] Guo Y A, Li B S, Lai W H, et al. Oxidation behavior of ni-based superalloy K444 at 900 ℃ in air during long term [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 285
[19] (郭永安, 李柏松, 赖万慧 等. 铸造镍基合金K444在900 ℃空气中的长期氧化行为 [J]. 中国腐蚀与防护学报, 2012, 32: 285)
[20] Sun W, Tan A W Y, King D J Y, et al. Tribological behavior of cold sprayed Inconel 718 coatings at room and elevated temperatures [J]. Surf. Coat. Technol., 2020, 385: 125386
doi: 10.1016/j.surfcoat.2020.125386
[21] Bayan E M, Storozhenko V Y, Bunin M A. Low-temperature solid-phase pyrolysis: A new method for the synthesis of nanocrystalline NiFe2O4 thin films [J]. Mater. Lett., 2021, 302: 130385
doi: 10.1016/j.matlet.2021.130385
[22] Xing L L, Zheng Y J, Cui L S, et al. Progress of water vapour effect on growth of alumina forming alloys [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 409
[22] (邢琳琳, 郑雁军, 崔立山 等. 水蒸汽影响氧化铝膜生长的研究新进展 [J]. 中国腐蚀与防护学报, 2011, 31: 409)
[23] Guillou S, Cabet C, Desgranges C, et al. Influence of hydrogen and water vapour on the kinetics of chromium oxide growth at high temperature [J]. Oxid. Met., 2011, 76: 193
doi: 10.1007/s11085-011-9246-6
[24] Xu Z B, Huang Z Y, Zhang J, et al. Tribological behaviors and microstructure evolution of Inconel 718 superalloy at mid-high temperature [J]. J. Mater. Res. Technol., 2021, 14: 2174
doi: 10.1016/j.jmrt.2021.07.102
[25] Wang Y X, Wang Y X, Chen C L, et al. Preparation of Zr/[Al(Si) N/CrN] coatings of stratified structure and their corrosion-wear performance in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 345
[25] (王永欣, 汪艺璇, 陈春林 等. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性 [J]. 中国腐蚀与防护学报, 2022, 42: 345)
[26] Fang Y, Fan H Z, Zhang Y S, et al. Preparation and tribological performance of three-dimensional lubricating layer on the surface of Al2O3/Mo self-lubricating structural ceramics [J]. Tribology, 2017, 37: 395
[26] (方媛, 樊恒中, 张永胜 等. 氧化铝/钼自润滑结构陶瓷表面三维复合润滑层的制备与摩擦学性能研究 [J]. 摩擦学学报, 2017, 37: 395)
[27] Guo H X, Liu Z Y, Wang Y X, et al. Tribological mechanism of micro-arc oxidation coatings prepared by different electrolyte systems in artificial seawater [J]. Ceram. Int., 2021, 47: 7344
doi: 10.1016/j.ceramint.2020.11.169
[28] Wang Y X, Wang L P, Li J L, et al. Tribological properties of graphite-like carbon coatings coupling with different metals in ambient air and water [J]. Tribol. Int., 2013, 60: 147
doi: 10.1016/j.triboint.2012.11.014
[29] Wang L P, Wang Y X, Wang Y F, et al. Tribological performances of non-hydrogenated amorphous carbon coupling with different coating counterparts in ambient air and water [J]. Wear, 2013, 300: 20
doi: 10.1016/j.wear.2013.01.093
[1] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[2] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[3] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[4] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[5] 杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[6] 任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[7] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[8] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[9] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[10] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[11] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[12] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[13] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[14] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[15] 李瑞涛, 肖博, 刘晓, 朱忠亮, 程义, 李俊菀, 曹杰玉, 丁海民, 张乃强. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.