Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 359-364     CSTR: 32134.14.1005.4537.2022.070      DOI: 10.11902/1005.4537.2022.070
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究
宋健, 周文晖, 王金龙(), 孙文瑶, 陈明辉, 王福会
东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
Corrosion Behavior of Block Materials of Yttria Stabilized Zirconia with Different Content of Y2O3 in Marine Environment
SONG Jian, ZHOU Wenhui, WANG Jinlong(), SUN Wenyao, CHEN Minghui, WANG Fuhui
Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(2783 KB)   HTML
摘要: 

针对钇稳定氧化锆 (YSZ) 材料在海洋环境中易腐蚀的问题,使用放电等离子烧结技术分别制备了5%和12% (质量分数) Y2O3稳定的YSZ块体材料,并对块体材料在高低温交替的水蒸气环境中进行腐蚀实验,模拟其作为热障涂层面层材料在海洋环境下使用时的腐蚀情况。分析了YSZ在低温水蒸气老化和高温烧结的交替腐蚀过程中,力学性能的变化以及裂纹的形成和扩展行为。结果表明:对于5%Y2O3含量的5YSZ在模拟海洋环境下抗弯强度损失严重,14 d的腐蚀实验使得抗弯强度下降了91.4%。然而对于高Y2O3含量的12YSZ材料,其在相同环境下腐蚀相同时间,抗弯强度未有明显变化。Y2O3含量高的YSZ具有更强的稳定性,更适合在海洋环境使用。

关键词 钇稳定氧化锆 (YSZ)ZrO2热障涂层 (TBCs)低温老化氧空位    
Abstract

In order to solve the corrosion troubles of Yttria Stabilized Zirconia (YSZ) materials in the marine environment, two YSZ block materials with 5% and 12% (mass fraction) Y2O3 were prepared by powder metallurgy with a discharge plasma sintering furnace, and their corrosion performance was assessed via alternative high- and low-temperature water vapor corrosion test, aiming to simulate the marine corrosive environment, encountered for thermal barrier coatings of aero engine in service. The mechanical properties and crack formation and propagation behavior of YSZ during the alternating corrosion process of low temperature steam aging and high temperature sintering were analyzed. The results of bending strength curve show that the bending strength of 5YSZ decreases by 91.4% after 14 d of corrosion test. However, for YSZ with higher Y2O3 content of 12%, its bending strength does not change significantly after tested in the same environment for the same time. Therefore, the YSZ with high Y2O3 content has stronger stability and is more suitable for marine environment.

Key wordsYSZ    ZrO2    TBCs    Low temperature degradation (LTD)    oxygen vacancy
收稿日期: 2022-03-14      32134.14.1005.4537.2022.070
ZTFLH:  TG172  
基金资助:国家自然科学基金(51801021);工业和信息技术部民机专项(MJ-2017-J-99);教育部中央高校基本科研业务费(N2102015)
作者简介: 宋健,男,1997年生,硕士生

引用本文:

宋健, 周文晖, 王金龙, 孙文瑶, 陈明辉, 王福会. 不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
Jian SONG, Wenhui ZHOU, Jinlong WANG, Wenyao SUN, Minghui CHEN, Fuhui WANG. Corrosion Behavior of Block Materials of Yttria Stabilized Zirconia with Different Content of Y2O3 in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 359-364.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.070      或      https://www.jcscp.org/CN/Y2023/V43/I2/359

图1  不同Y2O3含量的YSZ在高低温交替水蒸气环境下腐蚀后的抗弯强度变化曲线
图2  5YSZ和12YSZ在高低温交替水蒸气环境下腐蚀不同时间后的XRD结果
图3  5YSZ和12YSZ腐蚀时间同m相体积占比关联曲线
SampleY1 HW4 HW7 HW
5YSZ24.9%46%45.6%50%
12YSZ1.35%1.36%3.15%2.76%
表1  两种YSZ在高低温交替水蒸气环境下腐蚀不同次数后m相含量体积占比
图4  不同成分的YSZ在高低温交替水蒸气环境下腐蚀不同时间的扫描微观形貌
图5  YSZ在低温水蒸气环境中的腐蚀过程示意图
[1] Gong W, Wu C F, Zhao Z P, et al. Next-generation high-strength ceramic materials for deep-sea equipment and structural analysis [J]. Digit. Ocean Underwater Def., 2020, 3: 281
[1] (龚文, 吴超峰, 赵治平 等. 下一代深海装备用高强度陶瓷材料及结构分析 [J]. 数字海洋与水下攻防, 2020, 3: 281)
[2] Chevalier J, Cales B, Drouin J M. Low‐temperature aging of Y‐TZP ceramics [J]. J. Am. Ceram. Soc., 1999, 82: 2150
doi: 10.1111/j.1151-2916.1999.tb02055.x
[3] Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants [J]. Annu. Rev. Mater Res., 2007, 37: 1
doi: 10.1146/annurev.matsci.37.052506.084250
[4] Chevalier J, Gremillard L, Virkar A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends [J]. J. Am. Ceram. Soc., 2009, 92: 1901
doi: 10.1111/j.1551-2916.2009.03278.x
[5] Wolfe D E, Singh J, Miller R A, et al. Tailored microstructure of EB-PVD 8YSZ thermal barrier coatings with low thermal conductivity and high thermal reflectivity for turbine applications [J]. Surf. Coat. Technol., 2005, 190: 132
doi: 10.1016/j.surfcoat.2004.04.071
[6] Sato T, Shimada M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water [J]. J. Am. Ceram. Soc., 1985, 68: 356
doi: 10.1111/j.1151-2916.1985.tb15239.x
[7] Lange F F, Dunlop G L, Davis B I. Degradation during aging of transformation-toughened ZrO2-Y2O3 materials at 250 ℃ [J]. J. Am. Ceram. Soc., 1986, 69: 237
doi: 10.1111/j.1151-2916.1986.tb07415.x
[8] Jalkh E B B, Bergamo E T P, Monteiro K N, et al. Aging resistance of an experimental zirconia-toughened alumina composite for large span dental prostheses: optical and mechanical characterization [J]. J. Mech. Behav. Biomed. Mater., 2020, 104: 103659
doi: 10.1016/j.jmbbm.2020.103659
[9] Miragaya L M, Guimarães R B, Souza R O A E, et al. Effect of intra-oral aging on tm phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics [J]. J. Mech. Behav. Biomed. Mater., 2017, 72: 14
doi: S1751-6161(17)30167-4 pmid: 28432999
[10] Yoshimura M, Noma T, Kawabata K, et al. Role of H2O on the degradation process of Y-TZP [J]. J. Mater. Sci. Lett., 1987, 6: 465
doi: 10.1007/BF01756800
[11] Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules [J]. Chem. Mater., 2004, 16: 3988
doi: 10.1021/cm040167h
[12] Khor K A, Yang J. Lattice parameters, tetragonality (c/a) and transformability of tetragonal zirconia phase in plasma-sprayed ZrO2-Er2O3 coatings [J]. Mater. Lett., 1997, 31: 23
doi: 10.1016/S0167-577X(96)00245-5
[13] Borges M A P, Alves M R, Dos Santos H E S, et al. Oral degradation of Y-TZP ceramics [J]. Ceram. Int., 2019, 45: 9955
doi: 10.1016/j.ceramint.2019.02.038
[14] Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications [J]. Dent. Mater., 2018, 34: 879
doi: S0109-5641(17)30712-1 pmid: 29598882
[15] Pereira G K R, Venturini A B, Silvestri T, et al. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis [J]. J. Mech. Behav. Biomed. Mater., 2016, 55: 151
doi: 10.1016/j.jmbbm.2015.10.017
[16] Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2 (Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
[16] (姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263)
[17] He Y D, Ren C, Zhang K. High-temperature oxidation resistant coatings composed of YSZ particles packaged by nano-Al2O3 film [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 316
[18] Trice R W, Su Y J, Mawdsley J R, et al. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ [J]. J. Mater. Sci., 2002, 37: 2359
doi: 10.1023/A:1015310509520
[19] Cao X Q. New Materials and Structures of Thermal Barrier Coatings [M]. Beijing: Science Press, 2016
[19] (曹学强. 热障涂层新材料和新结构 [M]. 北京: 科学出版社, 2016)
[20] Zhao Y S, Zhang M, Dai J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades [J]. Mate. Rev., 2023, 37: 21040168
[20] (赵云松, 张迈, 戴建伟 等. 航空发动机涡轮叶片热障涂层研究进展 [J]. 材料导报, 2023, 37: 21040168)
[1] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[2] 李楠; 李瑛; 王胜刚; 王福会; 龙康 . 轧制纳米块体304不锈钢腐蚀行为的研究 II 钝化膜保护性能研究[J]. 中国腐蚀与防护学报, 2007, 27(3): 142-146 .