Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 261-270     CSTR: 32134.14.1005.4537.2022.075      DOI: 10.11902/1005.4537.2022.075
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
水热腐蚀老化对热障涂层的摩擦磨损性能的影响
周文晖1, 宋健1, 陈泽浩1(), 杨兰兰2, 王金龙1, 陈明辉1, 朱圣龙1,3, 王福会1,3
1.东北大学 沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
2.江苏科技大学材料科学与工程学院 镇江 212003
3.中国科学院金属研究所 腐蚀与防护实验室 沈阳 110016
Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings
ZHOU Wenhui1, SONG Jian1, CHEN Zehao1(), YANG Lanlan2, WANG Jinlong1, CHEN Minghui1, ZHU Shenglong1,3, WANG Fuhui1,3
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
3.China Laboratory of Corrosion and Protection, Institute of Matel Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(15557 KB)   HTML
摘要: 

海洋环境下,热障涂层因水蒸气的作用发生水热腐蚀老化,同时还承受高温气流冲蚀带来的摩擦磨损破坏。本文采用大气等离子喷涂技术在单晶合金N5上制备了带有NiCrAlY粘结层和8YSZ面层的热障涂层,并使用MFT-5000摩擦磨损试验机测试了热障涂层在水热腐蚀老化后的摩擦磨损行为,同时通过XRD与SEM对涂层腐蚀后的物相构成与磨损形貌进行了分析。结果表明,水热腐蚀老化会使YSZ陶瓷发生四方相至单斜相的相变,且单斜相主要在ZrO2晶界处萌生,引起晶粒间结合强度降低,导致涂层耐磨性能降低。在高温氧化环境及高温氧化-低温水热老化交变环境下,涂层的磨损机制为脆性断裂引起的片层剥离,同时还伴有磨粒磨损和黏着磨损;而在低温水热环境下涂层的磨损机制为微断裂引起的晶粒剥离。

关键词 热障涂层水热老化摩擦磨损    
Abstract

During in flight and grounded in port in marine environments, aero engine may experience high temperature and low temperature water vapor cycles, thus thermal barrier coatings should be suffered simultaneously from serious frictional wear during service, as well as hydrothermal corrosion aging at lower temperature during grounded in port, therefore, it seems to be intensively concerned how the low temperature hydrothermal aging affects the tribological performance of the TBCs. Hence, 8YSZ top-coat and NiCrAlY bond-coat were successively deposited on the single crystal superalloy N5 by APS, i.e., TBCs were constructed on the alloy surface. Then the frictional performance of the low temperature hydrothermal corrosion aged TBCs was assessed by means of MFT-5000 friction and wear tester, SEM and XRD. The results indicated that hydrothermal corrosion aging of the YSZ ceramic results in the occurrence of transformation from tetragonal phase to monoclinic phase, and the monoclinic phase mainly initiates at zirconia grain boundary, as a consequence, the cohesion of precipitated ZrO2 grains, and the wear resistance of the top coat would be gradually degraded. Slice delamination caused by brittle fracture was observed on the surface of the ceramic coating after long-term alternating corrosion degeneration or high termperature oxidation. Abrasive wear and adhesive wear were also found on the surface of the coatings. The wear mechanism of the low temperature hydrothermal corrosion aged coatings was microfracture, which induced by the exfoliation of YSZ grains.

Key wordsthermal barrier coating    low temperature hydrothermal aging    frictional wear
收稿日期: 2022-03-15      32134.14.1005.4537.2022.075
ZTFLH:  TG172  
基金资助:国家自然科学基金(51801021);工业和信息技术部项目(MJ-2017-J-99);教育部中央高效基本科研业务费(N2102015)
作者简介: 周文晖,男,1997年生,硕士生

引用本文:

周文晖, 宋健, 陈泽浩, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 水热腐蚀老化对热障涂层的摩擦磨损性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
Wenhui ZHOU, Jian SONG, Zehao CHEN, Lanlan YANG, Jinlong WANG, Minghui CHEN, Shenglong ZHU, Fuhui WANG. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 261-270.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.075      或      https://www.jcscp.org/CN/Y2023/V43/I2/261

CoatingArgon / L·min-1Helium / L·min-1Spray distance / mmGun speed / mm·s-1Gun interval / mmI / APowder feed rate / g·min-1
BC10030100V40010085020
TC805080V5008090020
表1  大气等离子喷涂参数
图1  APS制备的原始态热障涂层的表面与截面微观形貌图
图2  YSZ陶瓷层在不同环境下交替腐蚀10次后的XRD谱图
图3  YSZ陶瓷层在不同环境下交替腐蚀10次后的微观截面形貌图
图4  YSZ陶瓷层在不同环境下交替腐蚀10次后表面的EBSD图
图5  不同试验环境下交替腐蚀10次后YSZ陶瓷层的磨痕形貌
图6  不同试验环境下腐蚀10循环后YSZ陶瓷层的摩擦系数曲线
图7  不同环境下交替腐蚀10次后陶瓷层表面的磨损形貌
图8  H组试样反复相变示意图
图9  不同环境下交替腐蚀10次后陶瓷层的磨损形貌
[1] Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
[2] Yang M, Li Z G, Wang X Y, et al. Effect of spraying ceramic powder pore structure on thermophysical properties of plasma-sprayed thermal barrier coatings [J]. Ceram. Int., 2022, 48: 1125
doi: 10.1016/j.ceramint.2021.09.197
[3] Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
doi: 10.1016/S0079-6425(00)00020-7
[4] Tian W, He A J, Zhong Y, et al. Application of thermal barrier coatings on aero-engines of high thrust-to-weight ratio [J]. Gas Turbine Exp. Res., 2016, 29(5): 52
[4] (田伟, 何爱杰, 钟燕 等. 高推重比发动机热障涂层应用现状分析 [J]. 燃气涡轮试验与研究, 2016, 29(5): 52)
[5] Zhou F F, Wang Y, Wang L, et al. Synthesis and characterization of nanostructured t′-YSZ spherical feedstocks for atmospheric plasma spraying [J]. J. Alloy. Compd., 2018, 740: 610
doi: 10.1016/j.jallcom.2018.01.033
[6] Mondal K, Nuñez III L, Downey C M, et al. Recent advances in the thermal barrier coatings for extreme environments [J]. Mater. Sci. Energy Technol., 2021, 4: 208
[7] Duwez P, Brown F H, Odell F. The zirconia-yttria system [J]. J. Electrochem. Soc., 1951, 98: 356
doi: 10.1149/1.2778219
[8] Cao X Q. New Materials and Structures of Thermal Barrier Coating [M]. Beijing: Science Press, 2016: 166
[8] (曹学强. 热障涂层新材料和新结构 [M]. 北京: 科学出版社, 2016: 166)
[9] Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry [J]. Dent. Mater., 2010, 26: 807
doi: 10.1016/j.dental.2010.04.006 pmid: 20537701
[10] Cales B. Zirconia as a sliding material: histologic, laboratory, and clinical data [J]. Clin. Orthop. Relat. Res., 2000, 379: 94
doi: 10.1097/00003086-200010000-00013
[11] Chevalier J, Gremillard L, Virkar A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends [J]. J. Am. Ceram. Soc., 2009, 92: 1901
doi: 10.1111/j.1551-2916.2009.03278.x
[12] Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants [J]. Annu. Rev. Mater. Res., 2007, 37: 1
doi: 10.1146/annurev.matsci.37.052506.084250
[13] Cao X Q, Vassen R, Wang J S, et al. Degradation of zirconia in moisture [J]. Corros. Sci., 2020, 176: 109038
doi: 10.1016/j.corsci.2020.109038
[14] Wang J S, Chen M D, Zhou X, et al. WITHDRAWN: the effect of hydrothermal corrosion on the phase stability, microstructure and thermal cycling behavior of n-YSZ coating [J]. J. Eur. Ceram. Soc., 2021, doi: 10.1016/j.jeurceramsoc.2021.05.048
[15] Dharini T, Kuppusami P, Kumar N, et al. Tribological properties of YSZ and YSZ/Ni-YSZ nanocomposite coatings prepared by electron beam physical vapour deposition [J]. Ceram. Int., 2021, 47: 26010
doi: 10.1016/j.ceramint.2021.06.006
[16] Stachowiak G W, Stachowiak G B. Unlubricated wear and friction of toughened zirconia ceramics at elevated temperatures [J]. Wear, 1991, 143: 277
doi: 10.1016/0043-1648(91)90102-Z
[17] Liu H W, Xue Q J, Lin L. Friction and wear behavior of 3Y-TZP ceramics and their mechanisms [J]. Tribology, 1996, 16: 6
[17] (刘惠文, 薛群基, 林立. 氧化锆陶瓷的摩擦磨损行为与机理 [J]. 摩擦学报, 1996, 16: 6)
[18] Cattani-Lorente M, Durual S, Amez-Droz M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging [J]. Dent. Mater., 2016, 32: 394
doi: 10.1016/j.dental.2015.12.015 pmid: 26777095
[19] Li S J, An Y L, Zhou H D, et al. Plasma sprayed YSZ coatings deposited at different deposition temperatures, part 2: tribological performance [J]. Surf. Coat. Technol., 2018, 349: 998
doi: 10.1016/j.surfcoat.2018.06.093
[20] Zhang X X, Zhu D B, Liang J S. Progress on hydrothermal stability of dental zirconia ceramics [J]. J. Inorg. Mater., 2020, 35: 759
doi: 10.15541/jim20190401
[20] (张晓旭, 朱东彬, 梁金生. 齿科氧化锆陶瓷水热稳定性研究进展 [J]. 无机材料学报, 2020, 35: 759)
doi: 10.15541/jim20190401
[21] Guo X. Hydrothermal degradation mechanism of tetragonal zirconia [J]. J. Mater. Sci., 2001, 36: 3737
doi: 10.1023/A:1017925800904
[22] Guo X, Schober T. Water incorporation in tetragonal zirconia [J]. J. Am. Ceram. Soc, 2004, 87: 746
doi: 10.1111/j.1551-2916.2004.00746.x
[23] Pandey A K, Biswas K. Effect of hydrothermal treatment on tribological properties of alumina and zirconia based bioceramics [J]. Ceram. Int., 2016, 42: 2306
doi: 10.1016/j.ceramint.2015.10.026
[24] Wang J S. Failure mechanism of zirconia thermal barrier coating [D]. Wuhan: Wuhan University of Technology, 2018
[24] (王进双. 氧化锆热障涂层失效机理研究 [D]. 武汉: 武汉理工大学, 2018)
[25] He L M. High-Temperature Protective Coating [M]. Beijing: National Defense Industry Press, 2012: 54
[25] (何利民. 高温防护涂层技术 [M]. 北京: 国防工业出版社, 2012: 54)
[26] Murray J W, Leva A, Joshi S, et al. Microstructure and wear behaviour of powder and suspension hybrid Al2O3-YSZ coatings [J]. Ceram. Int., 2018, 44: 8498
doi: 10.1016/j.ceramint.2018.02.048
[27] Hawthorne H M, Erickson L C, Ross D, et al. The microstructural dependence of wear and indentation behaviour of some plasma-sprayed alumina coatings [J]. Wear, 1997, 203/204: 709
[1] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[2] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[3] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[4] 宋健, 周文晖, 王金龙, 孙文瑶, 陈明辉, 王福会. 不同Y2O3含量的YSZ块体材料在模拟海洋环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[5] 孙士斌, 赵子铭, 高珍鹏, 宫旭辉, 王东胜, 强强, 常雪婷. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 69-76.
[6] 类延华, 刘宁轩, 张玉良, 常雪婷, 刘涛. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[7] 胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[8] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[9] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[10] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[11] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[12] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[13] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[14] 蔡丽丽,马文,李新慧,尹轶川,马伯乐,白玉,王俊,董红英. (Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[15] 张珊榕,董红英,马文,尹轶川,李新慧,白玉,贾瑞灵. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.