Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 280-288     CSTR: 32134.14.1005.4537.2022.082      DOI: 10.11902/1005.4537.2022.082
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
DZ40M和K452高温合金在NaCl熔盐中的循环热腐蚀行为研究
申聚宝1, 崔宇2(), 刘莉1, 刘叡1, 孟凡帝1, 王福会1
1.东北大学 沈阳材料科学国家实验室东北大学联合研究分部 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl
SHEN Jubao1, CUI Yu2(), LIU Li1, LIU Rui1, MENG Fandi1, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(23773 KB)   HTML
摘要: 

采用涂盐法研究钴基DZ40M和镍基K452高温合金的循环热腐蚀行为。利用失量法、XRD、SEM、EDS、划痕、二维轮廓等测试手段,表征了DZ40M和K452的循环热腐蚀失效过程,对比分析了两种高温合金失效行为差异的原因。结果表明:15周期后,K452的抗循环热腐蚀性能优于DZ40M,原因在于K452中Al、Ti、Ni元素含量更高,一方面生成的外层NiTiO3可以有效阻挡熔盐侵蚀,另一方面内层Al2O3保证了腐蚀产物膜与基体紧密结合。

关键词 DZ40MK452NaCl熔盐循环热腐蚀    
Abstract

The cyclic hot corrosion behavior of cobalt based DZ40M and nickel based K452 superalloys beneath molten deposit NaCl in air at 900 ℃ was studied by means of gravimetric method, XRD, SEM, EDS, scratch instrument and two-dimensional profilometer. The results of 15 cycle testing revealed that K452 is superior to DZ40M in corrosion resistance, which may be ascribed to the higher content of Al, Ti and Ni of K452 alloy. In other word, the formed external scale of NiTiO3 on K452 alloy can effectively prevent molten salt corrosion, while the inner scale of Al2O3 ensures the close bonding between the corrosion product scale and the matrix.

Key wordsDZ40M    K452    NaCl molten salt    cyclic hot corrosion
收稿日期: 2022-03-23      32134.14.1005.4537.2022.082
ZTFLH:  TG174  
基金资助:国家重点研发计划(2017YFB0702303)
作者简介: 申聚宝,男,1996年生,硕士生

引用本文:

申聚宝, 崔宇, 刘莉, 刘叡, 孟凡帝, 王福会. DZ40M和K452高温合金在NaCl熔盐中的循环热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
Jubao SHEN, Yu CUI, Li LIU, Rui LIU, Fandi MENG, Fuhui WANG. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 280-288.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.082      或      https://www.jcscp.org/CN/Y2023/V43/I2/280

图1  DZ40M和K452合金的金相组织
图2  DZ40M和K452在900 ℃下循环热腐蚀动力学曲线
图3  DZ40M和K452合金试样循环热腐蚀不同周次后的宏观形貌
图4  DZ40M和K452合金不同周次循环热腐蚀后的表面XRD谱
图5  DZ40M合金经不同周次循环热腐蚀后的截面形貌及元素面分布
图6  DZ40M合金经1和15周次循环热腐蚀后的表面形貌及能谱分析结果
图7  K452合金经不同周次循环热腐蚀后的截面形貌及元素面分布
图8  K452合金经不同周次循环热腐蚀后的表面形貌及能谱分析结果
图9  DZ40M和K452合金经不同周次循环热腐蚀后的表面粗糙度及表面粗糙度对比
图10  K452合金经不同周次循环热腐蚀后氧化膜/基体界面结合力
[1] Xie C C, Xie X D, Zhou Q. Failure mode effect and criticality analysis for APU high pressure turbine nozzle blade [J]. Aviat. Maint. Eng., 2016, (2): 78
[1] (谢长城, 谢旭东, 周群. APU高压涡轮导向叶片的FMECA分析 [J]. 航空维修与工程, 2016, (2): 78)
[2] He X M, Chang H P. Technology ways and strategic countermeasures for developing heated ends of high thrust-to-weight ratio engine [J]. Aeronaut. Sci. Technol., 1999, (6): 32
[2] (何小明, 常海萍. 高推重比发动机热端部件发展的技术途径与战略对策 [J]. 航空科学技术, 1999, (6): 32)
[3] Bu J L, Gao Z K, Han Z Y, et al. Cracking analysis of low pressure turbine guide blade of engine [J]. Fail. Anal. Prev., 2020, 15: 179
[3] (卜嘉利, 高志坤, 韩振宇 等. 发动机低压涡轮导向叶片裂纹分析 [J]. 失效分析与预防, 2020, 15: 179)
[4] Zhao Y. Recrystallization behavior of a directionally solidified Co-base superalloy DZ40M [D]. Shenyang: Northeastern University, 2008
[4] (赵阳. 定向凝固钴基高温合金DZ40M的再结晶行为 [D]. 沈阳: 东北大学, 2008)
[5] Duan C Y, Liu P S, Qing H B. High temperature oxidation performance investigation on the activation energy of a Co-base superalloy oxidized in air [J]. Mater. Lett., 2021, 283: 128792
doi: 10.1016/j.matlet.2020.128792
[6] Sun Z, Chen X, Zhang L X, et al. Experimental and numerical study of transient liquid phase diffusion bonded DZ40M superalloys [J]. Crystals, 2021, 11: 479
doi: 10.3390/cryst11050479
[7] Li J, Yuan C, Guo J T, et al. Effect of hot isostatic pressing on microstructure of cast gas-turbine vanes of K452 alloy [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 631
doi: 10.1016/j.pnsc.2014.10.008
[8] Liu C J, Peng J Q. Four hot corrosion resistant materials for IGT blades [J]. Procedia Eng., 2015, 130: 662
doi: 10.1016/j.proeng.2015.12.292
[9] Fan J F, Liu G, Zhuo X S, et al. In-situ reaction synthesis Al2O3 overlay modified 7YSZ TBC for NaCl hot corrosion [J]. Ceram. Int., 2021, 47: 22404
doi: 10.1016/j.ceramint.2021.04.250
[10] Li F G, Yang L, Zhou Y C. Study advances of high temperature coating for aeroengine to resist marine atmospheric corrosion [J]. Therm. Spray Technol., 2019, 11(4): 1
[10] (李发国, 杨丽, 周益春. 航空发动机高温涂层耐海洋大气腐蚀研究进展 [J]. 热喷涂技术, 2019, 11(4): 1)
[11] Prabhakaran D, Jegadeeswaran N, Somasundaram B, et al. Corrosion resistance by HVOF coating on gas turbine materials of cobalt based superalloy [J]. Mater. Today: Proc., 2020, 20: 173
[12] Jithesh K, Arivarasu M. An investigation on hot corrosion and oxidation behavior of cobalt-based superalloy L605 in the simulated aero-engine environment at various temperatures [J]. Mater. Res. Express, 2019, 6: 126530
doi: 10.1088/2053-1591/ab54dd
[13] Silva-Leon P D, Sotelo-Mazon O, Salinas-Solano G, et al. Hot corrosion behavior of Ni20Cr alloy in NaVO3 molten salt [J]. J. Mater. Eng. Perform., 2019, 28: 5047
doi: 10.1007/s11665-019-04235-4
[14] Chellaganesh D, Khan M A, Winowlin J T, et al. Cyclic oxidation and hot corrosion behavior of Nickel-Iron-based superalloy [J]. High Temp. Mater. Processes, 2018, 37: 173
doi: 10.1515/htmp-2016-0130
[15] Xiong Y, Liu G M, Zhan F Y, et al. Hot corrosion and failure behavior of three thermal spraying coatings in simulated atmosphere/coal ash environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 369
[15] (熊义, 刘光明, 占阜元 等. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为 [J]. 中国腐蚀与防护学报, 2021, 41: 369)
[16] Yang B, Li M D, Liu G M, et al. Hot corrosion behavior of Inconel 625/NiCr coating prepared by HOVF [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 483
[16] (杨波, 李茂东, 刘光明 等. 超音速喷涂Inconel625/NiCr合金涂层的热腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 483)
[17] Mu M R, Li J Y, Shen J W, et al. Analysis and research on quality of exported aviation kerosene [J]. Refin. Chem. Ind., 2018, 29(5): 63
[17] (牟明仁, 李巾英, 沈靖文 等. 出口航空煤油的质量检验分析 [J]. 炼油与化工, 2018, 29(5): 63)
[18] Garces H F, Tran A, Sternlicht H, et al. Sea-salt-induced moderate-temperature degradation of thermally-sprayed MCrAlY bond-coats [J]. Surf. Coat. Technol., 2020, 404: 126459
doi: 10.1016/j.surfcoat.2020.126459
[19] Yu Z F. Research for corrosion behavior of GH4169 alloy in marine high temperature normal temperature alternating environment [D]. Shenyang: Northeastern University, 2020
[19] (余钟芬. 海洋高温-常温交替环境下GH4169合金腐蚀行为研究 [D]. 沈阳: 东北大学, 2020)
[20] Fu G Y, Zhao X, Liu Q, et al. Hot corrosion of cobalt-based alloy with (Na, K)2SO4 coating at 900 ℃ [J]. Adv. Mater. Res., 2011, 194-196: 1305
[21] Chang J X, Wang D, Liu X G, et al. Effect of rhenium addition on hot corrosion resistance of Ni-based single crystal superalloys [J]. Metall. Mater. Trans., 2018, 49A: 4343
[22] Song P, Liu M F, Jiang X W, et al. Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900 ℃ [J]. Mater. Des., 2021, 197: 109197
doi: 10.1016/j.matdes.2020.109197
[1] 刘培生; 陈国锋; 梁开明 . DZ40M钴基合金的高温氧化[J]. 中国腐蚀与防护学报, 1999, 19(6): 339-344 .
[2] 刘培生 . DZ-40M 钴基合金低压气相沉积铝化物涂层的高温氧化行为[J]. 中国腐蚀与防护学报, 1999, 19(3): 144-150 .