Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 220-230     CSTR: 32134.14.1005.4537.2022.087      DOI: 10.11902/1005.4537.2022.087
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
纳米填料在环氧防腐涂层中的应用研究进展
于芳, 王翔, 张昭()
浙江大学化学系 杭州 310027
Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings
YU Fang, WANG Xiang, ZHANG Zhao()
Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
全文: PDF(1004 KB)   HTML
摘要: 

有机涂层因操作便捷、成本低廉在金属防腐领域备受青睐,其中环氧树脂因其显著的化学惰性、对基材的优异附着力和优良的力学性能而被广泛应用。然而环氧涂层在固化过程中因收缩或溶剂蒸发而产生空隙和导电通道,降低了其防腐效率。解决这一问题的策略是向环氧涂层中加入纳米颜填料。本文针对当下应用于环氧防腐涂层的纳米颜填料进行了总结,详细阐述了非金属纳米填料 (包括无机非金属纳米填料和有机纳米填料) 和金属纳米材料,特别是新型纳米填料 (MOFs材料和MXene材料) 的性能及改性现状,并对其应用前景进行了展望。

关键词 环氧树脂纳米填料防腐    
Abstract

Organic coatings play a significant role in corrosion protection of metallic materials due to their convenient operation and low cost. Among them, epoxy resin is the most widely used as coating substrate due to its excellent adhesion to materials to be coated, remarkable chemical inertness and mechanical properties. However, voids and conductive channels would form due to shrinkage or solvent evaporation during its curing process. To cope with it, nanoparticles, which can be effectively filled in the tiny pores of epoxy resins are added, thereby improving the barrier and anti-corrosion properties of the coating. However, nanoparticles are prone to agglomeration owing to their high specific surface area, and therefore have poor dispersibility in organic resins. Therefore, surface-modification is required to improve their compatibility with resins and therefore to achieve specific performance. In this paper, nano-fillers currently used for epoxy anti-corrosion coatings are summarized and classified into three categories, namely non-metallic nano-fillers (including inorganic non-metallic nano-fillers and organic nano-fillers), metallic nano-fillers and new nano-fillers (MOFs and MXene materials), also, the properties and modification strategies of nano-fillers are introduced in detail. Finally, the challenges and outlook of nano-fillers are discussed.

Key wordsepoxy resin    nanofiller    anti-corrosion
收稿日期: 2022-03-29      32134.14.1005.4537.2022.087
ZTFLH:  TG172  
作者简介: 于芳,女,1996年生,硕士生

引用本文:

于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230.
Fang YU, Xiang WANG, Zhao ZHANG. Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 220-230.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.087      或      https://www.jcscp.org/CN/Y2023/V43/I2/220

图1  聚多巴胺修复石墨烯的固有缺陷[15]
图2  SiO2@MoS2核壳结构纳米粒子的合成机理[56]
图3  PDA和BTA改性的超高度剥离石墨烯 (PBG) 的合成及添加PBG的环氧树脂涂层 (EPBG) 的自愈性能示意图[34]
图4  BTA封装示意图和BTA@Zn-BTC MOF纳米粒子中可能的相互作用[115]
[1] Park S M, Shon M Y. Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating [J]. J. Ind. Eng. Chem., 2015, 21: 1258
[2] Zheng S L, Bellido-Aguilar D A, Hu J, et al. Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates [J]. Prog. Org. Coat., 2019, 136: 105265
[3] Dagdag O, Hsissou R, El Harfi A, et al. Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies [J]. Surf. Interf., 2020, 18: 100454
[4] Ramezanzadeh B, Moghadam M H M, Shohani N, et al. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating [J]. Chem. Eng. J., 2017, 320: 363
doi: 10.1016/j.cej.2017.03.061
[5] Zhu B F, Liu Z H, Liu J, et al. Preparation of fluorinated/silanized polyacrylates amphiphilic polymers and their anticorrosion and antifouling performance [J]. Prog. Org. Coat., 2020, 140: 105510
[6] Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot.. 2022, 42: 435
[6] (杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435)
[7] Yin M, Hou L F, Wang Z W, et al. Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy [J]. Corros. Sci., 2021, 184: 109378
doi: 10.1016/j.corsci.2021.109378
[8] Xie Y K, Liu W Q, Liang L Y, et al. Enhancement of anticorrosion property and hydrophobicity of modified epoxy coatings with fluorinated polyacrylate [J]. Colloids Surf., 2019, 579A: 123659
[9] Auepattana-Aumrung K, Phakkeeree T, Crespy D. Polymer-corrosion inhibitor conjugates as additives for anticorrosion application [J]. Prog. Org. Coat., 2022, 163: 106639
[10] Feghali E, Van De Pas D J, Parrott A J, et al. Biobased epoxy thermoset polymers from depolymerized native hardwood lignin [J]. ACS Macro Lett., 2020, 9: 1155
doi: 10.1021/acsmacrolett.0c00424 pmid: 35653206
[11] Javidparvar A A, Naderi R, Ramezanzadeh B. Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection [J]. Composites, 2019, 172B: 363
[12] Liu X W, Xiong J P, Lv Y W, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS [J]. Prog. Org. Coat., 2009, 64: 497
doi: 10.1016/j.porgcoat.2008.08.012
[13] Zmozinski A V, Peres R S, Freiberger K, et al. Zinc tannate and magnesium tannate as anticorrosion pigments in epoxy paint formulations [J]. Prog. Org. Coat., 2018, 121: 23
[14] Liu S Y, Wang X W, Yin Q, et al. A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor [J]. J. Mater. Sci. Technol., 2022, 112: 263
doi: 10.1016/j.jmst.2021.07.061
[15] Zheng Z Q, Xiao L L, Huang P, et al. Polydopamine improved anticorrosion of graphene on copper: inhibiting galvanic corrosion and healing structure defects [J]. Appl. Mater. Today, 2021, 24: 101069
[16] Sun W, Wu T T, Wang L D, et al. The role of graphene loading on the corrosion-promotion activity of graphene/epoxy nanocomposite coatings [J]. Composites, 2019, 173B: 106916
[17] Schriver M, Regan W, Gannett W J, et al. Graphene as a long-term metal oxidation barrier: worse than nothing [J]. ACS Nano, 2013, 7: 5763
doi: 10.1021/nn4014356 pmid: 23755733
[18] Jing Y J, Wang P Q, Yang Q B, et al. MoS2 decorated with ZrO2 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion of epoxy coatings [J]. Colloids Surf., 2021, 608A: 125625
[19] Ding J H, Zhao H R, Zhou M, et al. Super-anticorrosive inverse nacre-like graphene-epoxy composite coating [J]. Carbon, 2021, 181: 204
doi: 10.1016/j.carbon.2021.05.017
[20] Yan H, Zhang L, Li H, et al. Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating [J]. Carbon, 2020, 157: 217
doi: 10.1016/j.carbon.2019.10.034
[21] Su Y, Qiu S H, Wei J Y, et al. Sulfonated polyaniline assisted hierarchical assembly of graphene-LDH nanohybrid for enhanced anticorrosion performance of waterborne epoxy coatings [J]. Chem. Eng. J., 2021, 426: 131269
doi: 10.1016/j.cej.2021.131269
[22] Sun W, Wang L D, Yang Z Q, et al. A facile method for the modification of graphene nanosheets as promising anticorrosion pigments [J]. Mater. Lett., 2018, 228: 152
doi: 10.1016/j.matlet.2018.05.105
[23] Qiu S H, Liu G, Li W, et al. Noncovalent exfoliation of graphene and its multifunctional composite coating with enhanced anticorrosion and tribological performance [J]. J. Alloy. Compd., 2018, 747: 60
doi: 10.1016/j.jallcom.2018.03.007
[24] Shi H Y, Liu W Q, Xie Y K, et al. Synthesis of carboxymethyl chitosan-functionalized graphene nanomaterial for anticorrosive reinforcement of waterborne epoxy coating [J]. Carbohydr. Polym., 2021, 252: 117249
doi: 10.1016/j.carbpol.2020.117249
[25] Liu C B, Li J Y, Jin Z Y, et al. Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection [J]. Compos. Commun., 2019, 15: 155
doi: 10.1016/j.coco.2019.07.011
[26] Ren F, Zhu G M, Ren P G, et al. In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties [J]. Appl. Surf. Sci., 2014, 316: 549
doi: 10.1016/j.apsusc.2014.07.159
[27] Keshmiri N, Najmi P, Ramezanzadeh B, et al. Nano-Scale P, Zn-codoped reduced-graphene oxide incorporated epoxy composite; synthesis, electronic-level DFT-D modeling, and anti-corrosion properties [J]. Prog. Org. Coat., 2021, 159: 106416
[28] Lv X D, Li X T, Li N, et al. ZrO2 nanoparticle encapsulation of graphene microsheets for enhancing anticorrosion performance of epoxy coatings [J]. Surf. Coat. Technol., 2019, 358: 443
doi: 10.1016/j.surfcoat.2018.11.045
[29] Zhang C Y, Li W, Liu C, et al. Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings [J]. J. Colloid Interface Sci., 2022, 608: 1025
doi: 10.1016/j.jcis.2021.10.024
[30] Li Z J, He Y, Yan S M, et al. A novel silk fibroin-graphene oxide hybrid for reinforcing corrosion protection performance of waterborne epoxy coating [J]. Colloids Surf., 2022, 634A: 127959
[31] Zhu Q S, Li E, Liu X H, et al. Synergistic effect of polypyrrole functionalized graphene oxide and zinc phosphate for enhanced anticorrosion performance of epoxy coatings [J]. Composites, 2020, 130A: 105752
[32] Wu H, Cheng L, Liu C B, et al. Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance [J]. J. Colloid Interface Sci., 2021, 587: 755
doi: 10.1016/j.jcis.2020.11.035
[33] Zhou S G, Wu Y M, Zhao W J, et al. Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate [J]. Mater. Des., 2019, 169: 107694
doi: 10.1016/j.matdes.2019.107694
[34] Chen G Y, Jin B, Li Y L, et al. A smart healable anticorrosion coating with enhanced loading of benzotriazole enabled by ultra-highly exfoliated graphene and mussel-inspired chemistry [J]. Carbon, 2022, 187: 439
doi: 10.1016/j.carbon.2021.11.048
[35] Yan D S, Liu J L, Zhang Z H, et al. Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating [J]. Composites, 2021, 222B: 109075
[36] Cao K Y, Yu Z X, Yin D, et al. Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances [J]. Prog. Org. Coat., 2020, 143: 105629
[37] Dhamodharan D, Dhinakaran V, Nagavaram R, et al. Experimental and numerical study on smectic aligned zirconium phosphate decorated graphene oxide hybrids effects over waterborne epoxy multi-functional properties enhancement [J]. J. Ind. Eng. Chem., 2022, 107: 165
doi: 10.1016/j.jiec.2021.11.043
[38] Kumar A M, Jose J, Hussein M A. Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: feasible reinforcement in epoxy coatings on mild steel for corrosion protection [J]. Prog. Org. Coat., 2022, 163: 106678
[39] Nayak S R, Mohana K N, Hegde M B. Anticorrosion performance of 4-fluoro phenol functionalized graphene oxide nanocomposite coating on mild steel [J]. J. Fluorine Chem., 2019, 228: 109392
doi: 10.1016/j.jfluchem.2019.109392
[40] Liu J H, Yu Q, Yu M, et al. Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024 [J]. J. Alloy. Compd., 2018, 744: 728
doi: 10.1016/j.jallcom.2018.01.267
[41] Lin Y T, Don T M, Wong C J, et al. Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite [J]. Surf. Coat. Technol., 2019, 374: 1128
doi: 10.1016/j.surfcoat.2018.01.050
[42] Rajitha K, Mohana K N S. Synthesis of graphene oxide-based nanofillers and their influence on the anticorrosion performance of epoxy coating in saline medium [J]. Diamond Relat. Mater., 2020, 108: 107974
doi: 10.1016/j.diamond.2020.107974
[43] Aghili M, Yazdi M K, Ranjbar Z, et al. Anticorrosion performance of electro-deposited epoxy/ amine functionalized graphene oxide nanocomposite coatings [J]. Corros. Sci., 2021, 179: 109143
doi: 10.1016/j.corsci.2020.109143
[44] Ye Y W, Zhang D W, Liu T, et al. Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets [J]. J. Hazard. Mater., 2019, 364: 244
doi: S0304-3894(18)30949-X pmid: 30368062
[45] Xue X Z, Zhang J Y, Zhou D, et al. In-situ bonding technology and excellent anticorrosion activity of graphene oxide / hydroxyapatite nanocomposite pigment [J]. Dyes Pigment., 2019, 160: 109
doi: 10.1016/j.dyepig.2018.07.057
[46] Zhu X B, Zhao H C, Wang L P, et al. Bioinspired ultrathin graphene nanosheets sandwiched between epoxy layers for high performance of anticorrosion coatings [J]. Chem. Eng. J., 2021, 410: 128301
doi: 10.1016/j.cej.2020.128301
[47] Cen H Y, Cao J J, Chen Z Y. Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution [J]. Corros. Sci., 2020, 177: 109011
doi: 10.1016/j.corsci.2020.109011
[48] Li J C, Chen P, Wang Y, et al. Corrosion resistance of surface texturing epoxy resin coatings reinforced with fly ash cenospheres and multiwalled carbon nanotubes [J]. Prog. Org. Coat., 2021, 158: 106388
[49] Shen W N, Feng L J, Liu X, et al. Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying [J]. Prog. Org. Coat., 2016, 90: 139
[50] Rahmani P, Shojaei A, Tavandashti N P. Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating [J]. J. Ind. Eng. Chem., 2020, 83: 153
doi: 10.1016/j.jiec.2019.11.023
[51] Xia Y Q, Zhang N G, Zhou Z P, et al. Incorporating SiO2 functionalized g-C3N4 sheets to enhance anticorrosion performance of waterborne epoxy [J]. Prog. Org. Coat., 2020, 147: 105768
[52] Steffi A P, Balaji R, Prakash N, et al. Incorporation of SiO2 functionalized g-C3N4 sheets with TiO2 nanoparticles to enhance the anticorrosion performance of metal specimens in aggressive Cl- environment [J]. Chemosphere, 2022, 290: 133332
doi: 10.1016/j.chemosphere.2021.133332
[53] Xia Y Q, He Y, Chen C L, et al. Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating [J]. React. Funct. Polym., 2020, 146: 104405
doi: 10.1016/j.reactfunctpolym.2019.104405
[54] Li S X, Du F F, Lin Y X, et al. Excellent anti-corrosion performance of epoxy composite coatings filled with novel N-doped carbon nanodots [J]. Eur. Polym. J., 2022, 163: 110957
doi: 10.1016/j.eurpolymj.2021.110957
[55] Li Z Y, Ravenni G, Bi H C, et al. Effects of biochar nanoparticles on anticorrosive performance of zinc-rich epoxy coatings [J]. Prog. Org. Coat., 2021, 158: 106351
[56] Xia Y Q, He Y, Chen C L, et al. MoS2 nanosheets modified SiO2 to enhance the anticorrosive and mechanical performance of epoxy coating [J]. Prog. Org. Coat., 2019, 132: 316
[57] Jia S S, Deng S L, Luo S, et al. Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings [J]. Appl. Surf. Sci., 2019, 466: 84
doi: 10.1016/j.apsusc.2018.10.017
[58] Zhu B F, Ou R J, Liu J, et al. Fabrication of superhydrophobic surfaces with hierarchical structure and their corrosion resistance and self-cleaning properties [J]. Surf. Interfaces, 2022, 28: 101608
[59] Cheng M, Jiang H, Wang Z K, et al. Nanocatalyst-mediated oxygen depletion in epoxy coating for active corrosion protection [J]. Chem. Eng. J., 2021, 425: 131649
doi: 10.1016/j.cej.2021.131649
[60] Wang T, Ge H Y, Zhang K L. A novel core-shell silica@graphene straticulate structured antistatic anticorrosion composite coating [J]. J. Alloy. Compd., 2018, 745: 705
doi: 10.1016/j.jallcom.2018.02.222
[61] Chen X, Wen S F, Feng T, et al. High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection [J]. Prog. Org. Coat., 2020, 139: 105374
[62] Atta A M, Mohamed N H, Rostom M, et al. New hydrophobic silica nanoparticles capped with petroleum paraffin wax embedded in epoxy networks as multifunctional steel epoxy coatings [J]. Prog. Org. Coat., 2019, 128: 99
[63] Matin E, Attar M M, Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate [J]. Prog. Org. Coat., 2015, 78: 395
[64] Ghanbari A, Attar M M. A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate [J]. J. Ind. Eng. Chem., 2015, 23: 145
doi: 10.1016/j.jiec.2014.08.008
[65] Yu H D, Geng C D, Liu C M, et al. Near-infrared light photothermally induced shape memory and self-healing effects of epoxy resin coating with polyaniline nanofibers [J]. Syn. Met., 2020, 226:116417
[66] Hao Y S, Sun W, Jiang L L, et al. Self-healing effect of epoxy coating containing mesoporous polyaniline hollow spheres loaded with benzotriazole [J]. Prog. Org. Coat., 2021, 159: 106445
[67] Lv Y Q, Zheng Y Q, Zhu H L, et al. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106: 56
doi: 10.1016/j.jmst.2021.07.029
[68] Wang H H, Zhang W J, Ma Y N, et al. Phosphorylated polymer/anionic surfactant doped polypyrrole in waterborne epoxy matrix toward enhanced mechanical and chemical resistance [J]. Prog. Org. Coat., 2020, 143: 105634
[69] Liu T, Li J Y, Li X Y, et al. Effect of self-assembled tetraaniline nanofiber on the anticorrosion performance of waterborne epoxy coating [J]. Prog. Org. Coat., 2019, 128: 137
[70] Ma I A W, Sh A, Ramesh K, et al. Anticorrosion properties of epoxy-nanochitosan nanocomposite coating [J]. Prog. Org. Coat., 2017, 113: 74
[71] Cheng L, Liu C B, Wu H, et al. A two-dimensional nanocontainer based on mesoporous polydopamine coated lamellar hydroxyapatite towards anticorrosion reinforcement of waterborne epoxy coatings [J]. Corros. Sci., 2021, 193: 109891
doi: 10.1016/j.corsci.2021.109891
[72] Yan H, Cai M, Wang J C, et al. Insight into anticorrosion/antiwear behavior of inorganic-organic multilayer protection system composed of nitriding layer and epoxy coating with Ti3C2Tx MXene [J]. Appl. Surf. Sci., 2021, 536: 147974
doi: 10.1016/j.apsusc.2020.147974
[73] Javidparvar A A, Naderi R, Ramezanzadeh B. Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: application in epoxy-based nanocomposite for active corrosion protection [J]. Corros. Sci., 2020, 165: 108379
doi: 10.1016/j.corsci.2019.108379
[74] He Y, Zhang C L, Wu F, et al. Fabrication study of a new anticorrosion coating based on supramolecular nanocontainer [J]. Synth. Met., 2016, 212: 186
doi: 10.1016/j.synthmet.2015.10.022
[75] Asaad M A, Raja P B, Huseien G F, et al. Self-healing epoxy coating doped with Elaesis guineensis/silver nanoparticles: a robust corrosion inhibitor [J]. Constr. Build. Mater., 2021, 312: 125396
doi: 10.1016/j.conbuildmat.2021.125396
[76] Udoh I I, Shi H W, Liu F C, et al. Microcontainer-based waterborne epoxy coatings for AA2024-T3: Effect of nature and number of polyelectrolyte multilayers on active protection performance [J]. Mater. Chem. Phys., 2020, 241: 122404
doi: 10.1016/j.matchemphys.2019.122404
[77] Jin Z Y, Zhao Z L, Zhao T, et al. One-step preparation of inhibitor-loaded nanocontainers and their application in self-healing coatings [J]. Corros. Commun., 2021, 2: 63
doi: 10.1016/j.corcom.2021.10.001
[78] Yao Y C, Sun H, Zhang Y L, et al. Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers [J]. Prog. Org. Coat., 2020, 139: 105470
[79] Liu T F, Li W, Zhang C Y, et al. Preparation of highly efficient self-healing anticorrosion epoxy coating by integration of benzotriazole corrosion inhibitor loaded 2D-COF [J]. J. Ind. Eng. Chem., 2021, 97: 560
doi: 10.1016/j.jiec.2021.03.012
[80] Zhang M L, Yu X, Lin Y N, et al. Anti-corrosion coatings with active and passive protective performances based on v-COF/GO nanocontainers [J]. Prog. Org. Coat., 2021, 159: 106415
[81] Zhou C L, Li Z, Li J, et al. Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers [J]. Chem. Eng. J., 2020, 385: 123835
doi: 10.1016/j.cej.2019.123835
[82] Yan H, Fan X Q, Cai M, et al. Amino-functionalized Ti3C2Tx loading ZIF-8 nanocontainer@benzotriazole as multifunctional composite filler towards self-healing epoxy coating [J]. J. Colloid Interface Sci., 2021, 602: 131
doi: 10.1016/j.jcis.2021.06.004
[83] Cheng M, Li F T, Wang Z K, et al. New valve-free organosilica nanocontainer for active anticorrosion of polymer coatings [J]. Composites, 2021, 224B: 109185
[84] Wang J X, Yang H, Meng Z, et al. Epoxy coating with excellent anticorrosion and pH-responsive performances based on DEAEMA modified mesoporous silica nanomaterials [J]. Colloids Surf., 2022, 634A: 127951
[85] El-Faham A, Atta A M, Osman S M, et al. Silver-embedded epoxy nanocomposites as organic coatings for steel [J]. Prog. Org. Coat., 2018, 123: 209
[86] Shen W N, Zhang T F, Ge Y F, et al. Multifunctional AgO/epoxy nanocomposites with enhanced mechanical, anticorrosion and bactericidal properties [J]. Prog. Org. Coat., 2021, 152: 106130
[87] Radoman T S, Džunuzović J V, Grgur B N, et al. Improvement of the epoxy coating properties by incorporation of polyaniline surface treated TiO2 nanoparticles previously modified with vitamin B6 [J]. Prog. Org. Coat., 2016, 99: 346
[88] Pour Z S, Ghaemy M, Bordbar S, et al. Effects of surface treatment of TiO2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique [J]. Prog. Org. Coat., 2018, 119: 99
[89] Huang W F, Xiao Y L, Huang Z J, et al. Super-hydrophobic polyaniline-TiO2 hierarchical nanocomposite as anticorrosion coating [J]. Mater. Lett., 2020, 258: 126822
doi: 10.1016/j.matlet.2019.126822
[90] Talebi H, Olad A, Nosrati R. Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber [J]. Prog. Org. Coat., 2022, 163: 106665
[91] Hosseini M G, Sefidi P Y. Electrochemical impedance spectroscopy evaluation on the protective properties of epoxy/DBSAdoped polyaniline-TiO2 nanocomposite coated mild steel under cathodic polarization [J]. Surf. Coat. Technol., 2017, 331: 66
doi: 10.1016/j.surfcoat.2017.10.043
[92] Tavandashti N P, Almas S M, Esmaeilzadeh E. Corrosion protection performance of epoxy coating containing alumina/PANI nanoparticles doped with cerium nitrate inhibitor on Al-2024 substrates [J]. Prog. Org. Coat., 2021, 152: 106133
[93] Yu M D, Fan C Q, Han S K, et al. Anticorrosion behavior of superhydrophobic particles reinforced epoxy coatings for long-time in the high salinity liquid [J]. Prog. Org. Coat., 2020, 147: 105867
[94] Wu F, Li J F, Quan H, et al. Robust polyurea/poly (urea-formalde-hyde) hybrid microcapsules decorated with Al2O3 nano-shell for improved self-healing performance [J]. Appl. Surf. Sci., 2021, 542: 148561
doi: 10.1016/j.apsusc.2020.148561
[95] Zhang C, Chen L, He Y, et al. Designing a high-performance waterborne epoxy coating with passive/active dual self-healing properties by synergistic effect of V2O5@polyaniline-tannic acid inhibitors [J]. Prog. Org. Coat., 2021, 151: 106036
[96] Kang Y T, Wang C C, Chen C Y. Corrosion-protective performance of magnetic CoFe2O4/polyaniline nanocomposite within epoxy coatings [J]. J. Taiwan Inst. Chem. Eng., 2021, 127: 357
doi: 10.1016/j.jtice.2021.08.008
[97] Situ Y, Ji W W, Liu C Y, et al. Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings [J]. Prog. Org. Coat., 2019, 130: 158
doi: 10.1016/j.porgcoat.2019.01.034
[98] Liu X R, Miao M, Zhang J Y, et al. Surface coordination and excellent anticorrosion performance of strontiumapatite nanocomposite [J]. J. Ind. Eng. Chem., 2019, 80: 656
doi: 10.1016/j.jiec.2019.08.048
[99] Hosseini M G, Aboutalebi K. Improving the anticorrosive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO2 nanoparticles [J]. Prog. Org. Coat., 2018, 122: 56
[100] Feng Z L, Wan R J, Chen S M, et al. In-situ repair of marine coatings by a Fe3O4 nanoparticle-modified epoxy resin under seawater [J]. Chem. Eng. J., 2022, 430: 132827
doi: 10.1016/j.cej.2021.132827
[101] Atta A M, El-Faham A, Al-Lohedan H A, et al. Modified triazine decorated with Fe3O4 and Ag/Ag2O nanoparticles for self-healing of steel epoxy coatings in seawater [J]. Prog. Org. Coat., 2018, 121: 247
[102] El-Masry M M, Ramadan R, Ahmed M K. The effect of adding cobalt ferrite nanoparticles on the mechanical properties of epoxy resin [J]. Results Mater., 2020, 8: 100160
[103] Soltani N, Salavati H, Moghadasi A. The role of Na-montmorillonite/cobalt ferrite nanoparticles in the corrosion of epoxy coated AA 3105 aluminum alloy [J]. Surf. Interfaces, 2019, 15: 89
doi: 10.1016/j.surfin.2019.02.006
[104] Binyaseen A M, Bayazeed A, Al-Nami S Y, et al. Development of epoxy/rice straw-based cellulose nanowhiskers composite smart coating immobilized with rare-earth doped aluminate: photoluminescence and anticorrosion properties for sustainability [J]. Ceram. Int., 2022, 48: 4841
doi: 10.1016/j.ceramint.2021.11.020
[105] Qiu S H, Su Y, Zhao H C, et al. Ultrathin metal-organic framework nanosheets prepared via surfactant-assisted method and exhibition of enhanced anticorrosion for composite coatings [J]. Corros. Sci., 2021, 178: 109090
doi: 10.1016/j.corsci.2020.109090
[106] Arunadevi N, Swathika M, Mehala M, et al. New epoxy-Nano metal oxide-based coatings for enhanced corrosion protection [J]. J. Mol. Struct., 2022, 1250: 131790
doi: 10.1016/j.molstruc.2021.131790
[107] Zhao Y, Yan S M, He Y, et al. Synthesis of ultrathin α-zirconium phosphate functionalized with polypyrrole for reinforcing the anticorrosive property of waterborne epoxy coating [J]. Colloids Surf., 2022, 635A: 128052
[108] Li M L, Huang H W, Mo R B, et al. Single-step exfoliation, acidification and covalent functionalization of α-zirconium phosphate for enhanced anticorrosion of waterborne epoxy coatings [J]. Surf. Interfaces, 2021, 23: 100887
[109] Huang H W, Li M L, Tian Y Q, et al. Exfoliation and functionalization of α-zirconium phosphate in one pot for waterborne epoxy coatings with enhanced anticorrosion performance [J]. Prog. Org. Coat., 2020, 138: 105390
[110] Haddadi S A, Amini M, Ghaderi S, et al. Synthesis and cation-exchange behavior of expanded MoS2 nanosheets for anticorrosion applications [J]. Mater. Today: Proc., 2018, 5: 15573
[111] Gao F, Du A, Ma R N, et al. Improved corrosion resistance of acrylic coatings prepared with modified MoS2 nanosheets [J]. Colloids Surf., 2020, 587A: 124318
[112] Duan S, Dou B J, Lin X Z, et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings [J]. Colloids Surf., 2021, 624A: 126836
[113] Wei R Z, Liu Z, Wei W C, et al. Anticorrosion performance of hydrophobic acid-modified-MOFs/epoxy coatings [J]. Colloid Interface Sci. Commun., 2022, 46: 100580
doi: 10.1016/j.colcom.2021.100580
[114] Zhao H R, Liu Z, Cheng Z L. Superior compatible interface and non-conductive two dimensional (2D) Co2(OH)2BDC nanosheets enabled the robust anti-corrosion and anti-friction performance epoxy coating system [J]. Prog. Org. Coat., 2021, 154: 106181
[115] Liu C B, Qian B, Hou P M, et al. Stimulus responsive zeolitic imidazolate framework to achieve corrosion sensing and active protecting in polymeric coatings [J]. ACS Appl. Mater. Interfaces, 2021, 13: 4429
doi: 10.1021/acsami.0c22642
[116] Mohammadpour Z, Zare H R. Fabrication of a pH-sensitive epoxy nanocomposite coating based on a Zn-BTC metal-organic framework containing benzotriazole as a smart corrosion inhibitor [J]. Cryst. Growth Des., 2021, 21: 3954
doi: 10.1021/acs.cgd.1c00284
[117] Yan H, Li W, Li H, et al. Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating [J]. Prog. Org. Coat., 2019, 135: 156
[118] Chen J F, Zhao W J. Silk fibroin-Ti3C2TX hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment [J]. Chem. Eng. J., 2021, 423: 130195
doi: 10.1016/j.cej.2021.130195
[119] Li X M, Zhou S X. Epoxy-functionalized Ti3C2 nanosheet for epoxy coatings with prominent anticorrosion performance [J]. Prog. Org. Coat., 2022, 162: 106559
[120] Shen L, Zhao W J, Wang K, et al. GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings [J]. J. Hazard. Mater., 2021, 417: 126048
doi: 10.1016/j.jhazmat.2021.126048
[121] Nie Y, Huang J K, Ma S Y, et al. MXene-hybridized silane films for metal anticorrosion and antibacterial applications [J]. Appl. Surf. Sci., 2020, 527: 146915
doi: 10.1016/j.apsusc.2020.146915
[122] Zhao C C, Zhou M, Yu H B. Interfacial combination of Ti3C2Tx MXene with waterborne epoxy anticorrosive coating [J]. Appl. Surf. Sci., 2022, 572: 150894
doi: 10.1016/j.apsusc.2021.150894
[123] Fan X Q, Yan H, Cai M, et al. Achieving parallelly-arranged Ti3C2Tx in epoxy coating for anti-corrosive/wear high-efficiency protection [J]. Composites, 2022, 231B: 109581
[124] Li S H, Huang H W, Chen F, et al. Reinforced anticorrosion performance of waterborne epoxy coating with eco-friendly L-cysteine modified Ti3C2Tx MXene nanosheets [J]. Prog. Org. Coat., 2021, 161: 106478
[125] Cai M, Yan H, Li Y T, et al. Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application [J]. Chem. Eng. J., 2021, 410: 128310
doi: 10.1016/j.cej.2020.128310
[126] Yan H, Cai M, Li W, et al. Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2020, 54: 144
doi: 10.1016/j.jmst.2020.05.002
[127] Ding J H, Zhao H R, Yu H B. Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings [J]. Chem. Eng. J., 2022, 430: 132838
doi: 10.1016/j.cej.2021.132838
[128] Zhao H R, Ding J H, Zhou M, et al. Air-stable titanium carbide MXene nanosheets for corrosion protection [J]. ACS Appl. Nano Mater., 2021, 4: 3075
doi: 10.1021/acsanm.1c00219
[1] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[2] 张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[3] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[4] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[5] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[6] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[7] 连衍成, 梁富源, 贺建超, 李瑨, 武俊伟, 冷雪松. 超疏水聚四氟乙烯材料制备工艺的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
[8] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[9] 类延华, 刘宁轩, 张玉良, 常雪婷, 刘涛. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 597-604.
[10] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[11] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[12] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[13] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[14] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[15] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.