Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 365-370     CSTR: 32134.14.1005.4537.2022.094      DOI: 10.11902/1005.4537.2022.094
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究
黄锦阳1, 鲁金涛1(), 邢瑞华2, 张醒兴1, 黄春林3, 徐雅欣2
1.西安热工研究院有限公司 清洁低碳热力发电系统集成及运维国家工程研究中心 西安 710032
2.西北工业大学材料学院 凝固技术国家重点实验室 西安 710072
3.西安科技大学材料科学与工程学院 西安 710054
Carbonization Corrosion Behavior of Incoloy800H Alloy Used for Heat Transfer Tube in a Simulated Graphite Dust Environment
HUANG Jinyang1, LU Jintao1(), XING Ruihua2, ZHANG Xingxing1, HUANG Chunlin3, XU Yaxin2
1.National Engineering Research Center of Integration and Maintenance of Clean and Low-carbon Thermal Power Generation System, Xi'an Thermal Power Research Institute Co. Ltd., Xi'an 710032, China
2.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
3.College of Material Science and Engineering, Xi'an University of Science and Technology, Xi′an 710054, China
全文: PDF(5114 KB)   HTML
摘要: 

利用透射电子显微镜 (TEM) 、扫描电子显微镜 (SEM) 以及X射线衍射仪 (XRD) 等手段对Incoloy800H合金在650 oC饱和石墨粉尘环境中的碳化行为及其机制开展了研究。结果表明:Incoloy800H合金的碳化腐蚀深度曲线遵循抛物线规律,腐蚀速率常数为0.013 μm/s1/2,腐蚀产物层厚度随腐蚀时间的延长而增加;碳化3000 h后,合金表面腐蚀产物层主要以尖晶石相MnCr2O4和碳化物 (CrAlMn) x C y 为主,碳化层内颗粒状腐蚀产物为MnCr2O4M23C6以及Al2O3,且主要沿晶界分布;晶界碳化-氧化是导致合金腐蚀进程加剧的关键因素。

关键词 蒸汽发生器Incoloy800H碳化晶界腐蚀石墨粉    
Abstract

The carbonization corrosion behavior of Incoloy800H alloy was studied in a saturated graphite dust environment at 650 ℃ by means of transmission electron microscope, scanning electron microscope and X-ray diffractometer. The results show that the carbonization corrosion depth versus time curve of Incoloy 800H alloy followed parabolic law, and the rate constant of carbonization corrosion is 0.013 μm/s1/2. The thickness of corrosion product layer increased with the prolonging of corrosion time. After corrosion for 3000 h, the corrosion products on Incoloy800H alloy surface composed mainly of MnCr2O4 spinel and (CrAlMn) x C y carbide, while the granular products in the internal carbonization zone was confirmed as MnCr2O4, M23C6 and Al2O3, distributing along the grainboundaries.The key factors, which aggravate the corrosion process of Incoloy800H alloy, was the carbonization-oxidation of grain boundaries.

Key wordssteam generator    Incoloy800H    carbonization    grain boundary corrosion    graphite dust
收稿日期: 2022-04-06      32134.14.1005.4537.2022.094
ZTFLH:  TG172  
基金资助:陕西省自然科学基础研究计划(2020JM-716);中国华能集团有限公司科技项目(HNKJ20-H43)
作者简介: 黄锦阳,男,1988年生,硕士

引用本文:

黄锦阳, 鲁金涛, 邢瑞华, 张醒兴, 黄春林, 徐雅欣. 传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 365-370.
Jinyang HUANG, Jintao LU, Ruihua XING, Xingxing ZHANG, Chunlin HUANG, Yaxin XU. Carbonization Corrosion Behavior of Incoloy800H Alloy Used for Heat Transfer Tube in a Simulated Graphite Dust Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 365-370.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.094      或      https://www.jcscp.org/CN/Y2023/V43/I2/365

图1  Incoloy800H合金微观组织及XRD物相组成
图2  650 ℃饱和碳势下Incoloy800H合金碳化腐蚀深度变化规律
图3  Incoloy800H合金在650 ℃饱和碳势下碳化不同时间后的表面和截面形貌
图4  Incoloy800H合金在650 ℃饱和碳势下碳化不同时间后的表面XRD图谱
图5  Incoloy800H合金在650 ℃饱和碳势下碳化3000 h后的腐蚀层成分分析
图6  Incoloy800H合金碳化腐蚀过程示意图
[1] Zhang Z Y, Dong Y J, Li F, et al. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation [J]. Engineering, 2016, 2: 112
doi: 10.1016/J.ENG.2016.01.020
[2] Pan F, Yan Y F, Xu B S, et al. Research on heat treatment of T22 steel high-pressure boiler pipe [J]. Steel Pipe, 2010, 39(1): 60
[2] (潘峰, 颜云峰, 徐宝顺 等. 高压锅炉管用T22钢的热处理研究 [J]. 钢管, 2010, 39(1): 60)
[3] Li J, Zhan Y J, Li J, et al. Mechanical properties and microstructure evolution of domestic Incoloy 800H during aging in helium [J]. Therm. Power Gener., 2020, 49(11): 120
[3] (李江, 詹英杰, 李季 等. 国产Incoloy 800H合金在氦气中时效后力学性能及微观组织演化 [J]. 热力发电, 2020, 49(11): 120)
[4] Peng W, Chen T, Sun Q, et al. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR [J]. Nucl. Eng. Des., 2017, 316: 218
doi: 10.1016/j.nucengdes.2017.03.014
[5] Guo L X, Liang D, Wang X J, et al. Graphite dust deposition in high temperature gas cooled reactor [J]. China Powder Sci. Technol., 2019, 25(2): 47
[5] (郭丽潇, 梁栋, 王秀娟 等. 高温气冷堆蒸汽发生器中的石墨粉尘沉积 [J]. 中国粉体技术, 2019, 25(2): 47)
[6] Verfondern K, Xhonneux A, Nabielek H, et al. Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment [J]. Nucl. Eng. Des., 2014, 273: 85
doi: 10.1016/j.nucengdes.2014.01.026
[7] Kadak A C. The status of the US high-temperature gas reactors [J]. Engineering, 2016, 2: 119
doi: 10.1016/J.ENG.2016.01.026
[8] Peng Y W, Chen C M, Li X Y, et al. Effect of low-temperature surface carburization on stress corrosion cracking of AISI 304 austenitic stainless steel [J]. Surf. Coat. Technol., 2017, 328: 420
doi: 10.1016/j.surfcoat.2017.08.058
[9] Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth [J]. J. Catal., 1997, 169: 240
doi: 10.1006/jcat.1997.1634
[10] Yin R C. Carburization performance of Incoloy 800HT in CH4/H2 gas mixtures [J]. Mater. Sci. Eng., 2004, 380A: 281
[11] Grabke H J, Wolf I. Carburization and oxidation [J]. Mater. Sci. Eng., 1987, 87: 23
[12] Gui Y, Liang Z Y, Zhao Q X. Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment [J]. Oxid. Met., 2019, 92: 123
doi: 10.1007/s11085-019-09917-x
[13] Chang C H, Tsai W T. Carburization behavior under the pits induced by metal dusting in 304L and 347 stainless steels [J]. Mater. Chem. Phys., 2009, 116: 426
doi: 10.1016/j.matchemphys.2009.04.011
[14] Grabke H J, Krajak R, Paz J C N. On the mechanism of catastrophic carburization: 'metal dusting' [J]. Corros. Sci., 1993, 35: 1141
doi: 10.1016/0010-938X(93)90334-D
[15] Jakobi D, Gommans R. Typical failures in pyrolysis coils for ethylene cracking [J]. Mater. Corros., 2003, 54: 881
doi: 10.1002/maco.200303731
[16] McLeod A C, Bishop C M, Stevens K J, et al. Microstructure and carburization detection in HP alloy pyrolysis tubes [J]. Metallogr. Microstruct. Anal., 2015, 4: 273
doi: 10.1007/s13632-015-0210-8
[17] Li H, Chen W X. High temperature carburization behaviour of Mn-Cr-O spinel oxides with varied concentrations of manganese [J]. Corros. Sci., 2011, 53: 2097
doi: 10.1016/j.corsci.2011.02.021
[18] Wolf I, Grabke H J. A study on the solubility and distribution of carbon in oxides [J]. Solid State Commun., 1985, 54: 5
doi: 10.1016/0038-1098(85)91021-X
[19] Colwell J A, Rapp R A. Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950 °C [J]. Metall. Trans., 1986, 17A: 1065
[20] Li C S, Yang Y S. Coking and carburizing behaviors of metal materials in high temperature carbon-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 188
[20] (李处森, 杨院生. 金属材料在高温碳气氛中的结焦与渗碳行为 [J]. 中国腐蚀与防护学报, 2004, 24: 188)
[21] Liu X, Wang H, Zhu Z L, et al. Oxidation characteristics of austenitic heat-resistant steel HR3C and Sanicro25 in supercritical water for power station [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 529
[21] (刘晓, 王海, 朱忠亮 等. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2020, 40: 529)
[22] Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
doi: 10.1016/j.corsci.2015.07.007
[23] Rouillard F, Moine G, Tabarant M, et al. Corrosion of 9Cr steel in CO2 at intermediate temperature II: mechanism of carburization [J]. Oxid. Met., 2012, 77: 57
doi: 10.1007/s11085-011-9272-4
[24] Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
[24] (李瑞涛, 肖博, 刘晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327)
[25] Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
[25] (焦洋, 张胜寒, 檀玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417)
[1] 张陈扬, 刘慧丛, 韩东晓, 朱立群, 李卫平. 微米级SiC/Ni-Co-P复合镀层的制备及影响因素[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[2] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[3] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[4] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[5] 郭永安,李柏松,赖万慧,郭建亭,周兰章. 铸造镍基合金K444在900℃空气中的长期氧化行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[6] 袁比飞,郑雁军,荆栋,崔立山,卢贵武. Mn-Cr-O和Mn-Al-O尖晶石碳化行为研究[J]. 中国腐蚀与防护学报, 2011, 31(1): 18-22.
[7] 余远方,王辉,胡石林. 690TT合金在特殊环境下的腐蚀问题[J]. 中国腐蚀与防护学报, 2010, 30(3): 251-256.
[8] 程芳婷 . 蒸汽发生器的腐蚀失效分析[J]. 中国腐蚀与防护学报, 2006, 26(6): 376-379 .
[9] 张田宏; 张俊旭; 杜义; 彭冀湘 . 稀土对奥氏体焊缝金属晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2006, 26(5): 299-302 .
[10] 胡津; 罗仁胜; 姚忠凯 . 晶须对铝基复合材料应力腐蚀开裂行为的影响[J]. 中国腐蚀与防护学报, 2001, 21(4): 240-244 .
[11] 席慧智; 李莉; 谷万里 . 0Cr18Ni9钢渗铬后冷却方式对耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2000, 20(4): 211-216 .