Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 312-320     CSTR: 32134.14.1005.4537.2022.099      DOI: 10.11902/1005.4537.2022.099
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究
蒋芳芳1, 云虹1(), 彭莉2, 张依豪1, 李卫顺1, 代文静1, 王保峰1, 徐群杰1
1.上海市电力材料防护与新材料重点实验室 上海热交换系统节能工程技术研究中心 上海电力大学环境与化学工程学院 上海 200090
2.上海海关机电产品检测技术中心 上海 200135
Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline
JIANG Fangfang1, YUN Hong1(), PENG Li2, ZHANG Yihao1, LI Weishun1, DAI Wenjing1, WANG Baofeng1, XU Qunjie1
1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Heat-exchange System and Energy Saving, Shanghai University of Electric Power, College of Environmental and Chemical Engineering, Shanghai 200090, China
2.Technical Center for Mechanical and Electrical Product Inspection and Testing of Shanghai Customs, Shanghai 200135, China
全文: PDF(9747 KB)   HTML
摘要: 

采用水热法结合原位化学氧化法在304不锈钢表面制备了不同种类NiFe-LDH (层状双氢氧化物) /聚苯胺 (PANI) 复合涂层。利用SEM、EDS能谱分析、XRD、FT-IR和XPS,对不同LDH的表面形貌和结构进行分析。采用极化曲线和电化学阻抗谱研究了涂层对基底的防蚀性能,并对其耐腐蚀机理进行探讨。结果表明,添加Fe(NO3)3得到层状结构的LDH,采用PANI改性可进一步优化LDH的表面结构。PANI和LDH之间存在化学键的结合,二者协同作用提升复合涂层的综合性能。在168 h浸泡期间,NiFe-LDH/PANI复合涂层在1 mol/L H2SO4溶液中具有良好的化学稳定性,为304不锈钢提供优良的物理屏蔽和阳极氧化保护作用。

关键词 聚苯胺层状双氢氧化物耐蚀性能304 不锈钢    
Abstract

Different kinds of NiFe-LDH/polyaniline (PANI) composite coatings were prepared on the surface of 304 stainless steel by hydrothermal method coupled with in-situ polymerization method. The surface morphology and structure of the prepared LDH coatings were investigated by scanning electron microscope (SEM), energy dispersive spectroscope (EDS), X-ray diffractometer (XRD), Fourier transform infrared spectroscope (FT-IR) and X-ray photoelectron spectroscope (XPS). While the anti-corrosive performance of the coatings was characterized by means of polarization curve measurement and electrochemical impedance spectroscope, and the corrosion mechanism was discussed. The results showed that the composite LDH coatings with lamellar structure may be acquired by adding Fe(NO3)3. Then, its surface structure was further optimized by modification with PANI. There was a chemical bond between PANI and LDH, and the synergistic effect of them could improve the comprehensive performance of the composite coating. During 168 h immersion in 1 mol/L H2SO4 solution, NiFe-LDH/PANI composite coating exhibited good chemical stability, which implied that the coating could provide excellent physical shielding and anodic protection for 304 stainless steel.

Key wordspolyaniline    layered double hydroxide    anti-corrosive    304 stainless steel
收稿日期: 2022-04-09      32134.14.1005.4537.2022.099
ZTFLH:  TB332  
基金资助:国家自然科学基金(21972090);国家自然科学基金(22075173)
作者简介: 蒋芳芳,女,1996年生,硕士生

引用本文:

蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
Fangfang JIANG, Hong YUN, Li PENG, Yihao ZHANG, Weishun LI, Wenjing DAI, Baofeng WANG, Qunjie XU. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 312-320.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.099      或      https://www.jcscp.org/CN/Y2023/V43/I2/312

图1  304不锈钢上所制备涂层表面SEM图和相应EDS元素面扫描图
图2  304不锈钢表面所制备涂层的XRD谱图
图3  304不锈钢表面所制备涂层的FT-IR图
图4  304不锈钢表面不同涂层附着力测试后的光学形貌
图5  304不锈钢表面不同涂层在1 mol/L H2SO4溶液中的动电位极化曲线
图6  304不锈钢表面不同涂层在1 mol/L H2SO4溶液中的Nyquist图及等效电路
SampleTime / hCPEf / Ω-1·cm-2·S-nRf / Ω·cm2CPEdl / Ω-1·cm-2·S-nRct / Ω·cm2T / Ω-1·cm-2·S-0.5t / S-0.5
NiFe(s)-LDH24.89×10-51.5666.23×10-525.90------
NiFe-LDH0------4.08×10-54.36×105------
2------4.32×10-53.39×106------
8------4.42×10-51.98×106------
244.27×10-5422.53.31×10-51.90×105------
365.63×10-5400.05.78×10-59.31×104------
724.85×10-5413.62.00×10-44.55×104------
1682.60×10-5438.41.82×10-47.59×104------
NiFe(s)-LDH/PANI04.59×10-5162.3------0.9061.873
26.08×10-5183.1------0.8141.574
81.35×10-4175.3------0.1081.295
242.14×10-4224.4------0.1091.081
363.46×10-4190.4------0.1280.827
NiFe-LDH/PANI03.01×10-543.2------0.4772.764
23.95×10-532.6------0.3862.690
83.95×10-532.6------0.2541.533
244.33×10-529.9------0.2091.308
364.62×10-534.7------0.2211.213
725.15×10-539.4------0.1951.101
1685.23×10-539.1------0.1860.935
表1  304不锈钢表面不同涂层在1 mol/L H2SO4溶液中浸泡不同时间后的电化学阻抗谱拟合参数
图7  不同涂层在1 mol/L H2SO4溶液中浸泡不同时长的Nyquist图及等效电路图
图8  304不锈钢表面不同涂层的XPS谱图
[1] Zhu Y X, Song G L, Wu P P, et al. A protective superhydrophobic Mg-Zn-Al LDH film on surface-alloyed magnesium [J]. J. Alloy. Compd., 2021, 855: 157550
doi: 10.1016/j.jallcom.2020.157550
[2] He Q Q, Zhou M J, Hu J M. Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys [J]. Electrochim. Acta, 2020, 355: 136796
doi: 10.1016/j.electacta.2020.136796
[3] Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
[3] (刘术辉, 刘斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16)
[4] Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
[4] (王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335)
[5] Cao Y H, Zheng D J, Zhang F, et al. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review [J]. J. Mater. Sci. Technol., 2022, 102: 232
doi: 10.1016/j.jmst.2021.05.078
[6] Chen Y N, Wu L, Yao W H, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating [J]. Corros. Sci., 2022, 194: 109941
doi: 10.1016/j.corsci.2021.109941
[7] Hu Y L, Wu Z, Zheng X T, et al. ZnO/ZnGaNO heterostructure with enhanced photocatalytic properties prepared from a LDH precursor using a coprecipitation method [J]. J. Alloy. Compd., 2017, 709: 42
doi: 10.1016/j.jallcom.2017.02.124
[8] Chen J F, Lin W X, Liang S Y, et al. Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy [J]. Appl. Surf. Sci., 2019, 463: 535
doi: 10.1016/j.apsusc.2018.08.242
[9] Wang L D, Zong Q F, Sun W, et al. Chemical modification of hydrotalcite coating for enhanced corrosion resistance [J]. Corros. Sci., 2015, 93: 256
doi: 10.1016/j.corsci.2015.01.033
[10] Wen T T, Yan R, Wang N, et al. PPA-containing layered double hydroxide (LDH) films for corrosion protection of a magnesium alloy [J]. Surf. Coat. Technol., 2020, 383: 125255
doi: 10.1016/j.surfcoat.2019.125255
[11] Tang Y, Wu F, Fang L, et al. A comparative study and optimization of corrosion resistance of ZnAl layered double hydroxides films intercalated with different anions on AZ31 Mg alloys [J]. Surf. Coat. Technol., 2019, 358: 594
doi: 10.1016/j.surfcoat.2018.11.070
[12] Li L X, Xie Z H, Fernandez C, et al. Development of a thiophene derivative modified LDH coating for Mg alloy corrosion protection [J]. Electrochim. Acta, 2020, 330: 135186
doi: 10.1016/j.electacta.2019.135186
[13] Song Y L, Wang H Y, Liu Q, et al. Sodium dodecyl sulfate (SDS) intercalated Mg-Al layered double hydroxides film to enhance the corrosion resistance of AZ31 magnesium alloy [J]. Surf. Coat. Technol., 2021, 422: 127524
doi: 10.1016/j.surfcoat.2021.127524
[14] Alibakhshi E, Ghasemi E, Mahdavian M, et al. A comparative study on corrosion inhibitive effect of nitrate and phosphate intercalated Zn-Al- layered double hydroxides (LDHs) nanocontainers incorporated into a hybrid silane layer and their effect on cathodic delamination of epoxy topcoat [J]. Corros. Sci., 2017, 115: 159
doi: 10.1016/j.corsci.2016.12.001
[15] Ye H L. Autogenous formation and smart behaviors of nitrite- and nitrate-intercalated layered double hydroxides (LDHs) in portland cement-metakaolin-dolomite blends [J]. Cem. Concr. Res., 2021, 139: 106267
doi: 10.1016/j.cemconres.2020.106267
[16] Rodriguez J, Bollen E, Nguyen T D, et al. Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn-Mg coated steel [J]. Prog. Org. Coat., 2020, 149: 105894
[17] Tabish M, Zhao J M, Wang J B, et al. Improving the corrosion protection ability of epoxy coating using CaAl LDH intercalated with 2-mercaptobenzothiazole as a pigment on steel substrate [J]. Prog. Org. Coat., 2022, 165: 106765
[18] Wu H S, Shen G Z, Li R X, et al. The growth behavior and properties of orientated LDH film composited with reduced graphene oxide [J]. Surf. Coat. Technol., 2022, 436: 128261
doi: 10.1016/j.surfcoat.2022.128261
[19] Su Y, Qiu S H, Wei J Y, et al. Sulfonated polyaniline assisted hierarchical assembly of graphene-LDH nanohybrid for enhanced anticorrosion performance of waterborne epoxy coatings [J]. Chem. Eng. J., 2021, 426: 131269
doi: 10.1016/j.cej.2021.131269
[20] Bai C H, Sun S G, Xu Y Q, et al. Facile one-step synthesis of nanocomposite based on carbon nanotubes and nickel-aluminum layered double hydroxides with high cycling stability for supercapacitors [J]. J. Colloid Interface Sci., 2016, 480: 57
doi: 10.1016/j.jcis.2016.07.001
[21] Pancrecious J K, Vineetha S V, Bill U S, et al. Ni-Al polyvanadate layered double hydroxide with nanoceria decoration for enhanced corrosion protection of aluminium alloy [J]. Appl. Clay Sci., 2021, 211: 106199
doi: 10.1016/j.clay.2021.106199
[22] Zhou P, Xu J X, Yu L. Inhibitive effect of SiO2@ NO2 - intercalated MgAl-LDH nanocomposite on steel in Cl- contaminated saturated Ca(OH)2 solution [J]. Corros. Sci., 2022, 195: 109997
doi: 10.1016/j.corsci.2021.109997
[23] Lee Y, Cha J H, Jung D Y. Selective lithium adsorption of silicon oxide coated lithium aluminum layered double hydroxide nanocrystals and their regeneration [J]. Chem. Asian J., 2021, 16: 974
doi: 10.1002/asia.202100126
[24] Wu H, Shi Z, Zhang X M, et al. Achieving an acid resistant surface on magnesium alloy via bio-inspired design [J]. Appl. Surf. Sci., 2019, 478: 150
doi: 10.1016/j.apsusc.2019.01.181
[25] Liu A, Ju X D, Tian H W, et al. Direct synthesis of layered double hydroxides monolayer nanosheets for co-assembly of nanobrick wall hybrid film with excellent corrosion resistance [J]. Appl. Surf. Sci., 2019, 493: 239
doi: 10.1016/j.apsusc.2019.06.295
[26] Schindelholz E J, Spoerke E D, Nguyen H D, et al. Extraordinary corrosion protection from polymer-clay nanobrick wall thin films [J]. ACS Appl. Mater. Interfaces, 2018, 10: 21799
doi: 10.1021/acsami.8b05865
[27] Zhou K Q, Gui Z, Hu Y. Facile synthesis of LDH nanoplates as reinforcing agents in PVA nanocomposites [J]. Polym. Adv. Technol., 2017, 28: 386
doi: 10.1002/pat.3900
[28] Gao Y Z, Syed J A, Lu H B, et al. Anti-corrosive performance of electropolymerized phosphomolybdic acid doped PANI coating on 304SS [J]. Appl. Surf. Sci., 2016, 360: 389
doi: 10.1016/j.apsusc.2015.11.029
[29] Jiang L, Syed J A, Gao Y Z, et al. Electropolymerization of camphorsulfonic acid doped conductive polypyrrole anti-corrosive coating for 304SS bipolar plates [J]. Appl. Surf. Sci., 2017, 426: 87
doi: 10.1016/j.apsusc.2017.07.077
[30] Cao X, Zeng H Y, Xu S, et al. Facile fabrication of the polyaniline/layered double hydroxide nanosheet composite for supercapacitors [J]. Appl. Clay Sci., 2019, 168: 175
doi: 10.1016/j.clay.2018.11.011
[31] Hu J L, Gan M Y, Ma L, et al. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites [J]. Appl. Surf. Sci., 2015, 328: 325
doi: 10.1016/j.apsusc.2014.12.042
[32] Sun M, Ma Z D, Li A H, et al. Anticorrosive performance of polyaniline/waterborne epoxy/poly (methylhydrosiloxane) composite coatings [J]. Prog. Org. Coat., 2020, 139: 105462
[33] Caldona E B, de Leon A C C, Pajarito B B, et al. Novel anti-corrosion coatings from rubber-modified polybenzoxazine-based polyaniline composites [J]. Appl. Surf. Sci., 2017, 422: 162
doi: 10.1016/j.apsusc.2017.05.083
[34] Feng Y H, Ma R G, Wang M M, et al. Crystallinity effect of NiFe LDH on the growth of Pt nanoparticles and hydrogen evolution performance [J]. J. Phys. Chem. Lett., 2021, 12: 7221
doi: 10.1021/acs.jpclett.1c02095
[35] Wang W, Liu Y C, Li J, et al. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst [J]. J. Mater. Chem., 2018, 6A: 14299
[36] Zhang L, Zhang R, Ge R X, et al. Facilitating active species generation by amorphous NiFe-Bi layer formation on NiFe-LDH nanoarray for efficient electrocatalytic oxygen evolution at alkaline pH [J]. Chem. Eur. J, 2017, 23: 11499
doi: 10.1002/chem.201702745
[37] Li H, Li F, Yu J G, et al. 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst for enhanced CO2 photoreduction [J]. Acta Phys.-Chim. Sin., 2021, 37: 2010073
[37] (李瀚, 李芳, 余家国 等. 二维/二维FeNi-LDH/g-C3N4复合光催化剂用于促进CO2光还原反应 [J]. 物理化学学报, 2021, 37: 2010073)
[38] Wang M X, Yun H, Tan K Q, et al. One-step electrochemical synthesis of poly (vinyl pyrrolidone) modified polyaniline coating on stainless steel for high corrosion protection performance [J]. Prog. Org. Coat., 2020, 149: 105908
[39] Lin Y C, Zhong X X, Huang H X, et al. Preparation and application of polyaniline doped with different sulfonic acids for supercapacitor [J]. Acta Phys. -Chim. Sin., 2016, 32: 474
doi: 10.3866/PKU.WHXB201511104
[40] Jiang D B, Jing C, Yuan Y S, et al. 2D-2D growth of NiFe LDH nanoflakes on montmorillonite for cationic and anionic dye adsorption performance [J]. J. Colloid Interface Sci., 2019, 540: 398
doi: 10.1016/j.jcis.2019.01.022
[41] Shi J M, Liu X R, Bai X F. Effect of N-doping, exfoliation, defect-inducing of Ni-Fe layered double hydroxide (Ni-Fe LDH) nanosheets on catalytic hydrogen storage of N-ethylcarbazole over Ru/Ni-Fe LDH [J]. Fuel, 2021, 306: 121688
doi: 10.1016/j.fuel.2021.121688
[42] Cai H P, Feng C C, Xiao H B, et al. Synthesis of Fe3O4/rGO@PANI with three-dimensional flower-like nanostructure and microwave absorption properties [J]. J. Alloy. Compd., 2022, 893: 162227
doi: 10.1016/j.jallcom.2021.162227
[43] Huang H, Abbas S C, Deng Q D, et al. An all-paper, scalable and flexible supercapacitor based on vertically aligned polyaniline (PANI) nano-dendrites@fibers [J]. J. Power Sources, 2021, 498: 229886
doi: 10.1016/j.jpowsour.2021.229886
[44] Meng F Y, Yu Y, Sun D F, et al. Three-dimensional needle branch-like PANI/CoNiP hybrid electrocatalysts for hydrogen evolution reaction in acid media [J]. ACS Appl. Energy Mater., 2021, 4: 2471
doi: 10.1021/acsaem.0c03033
[45] Yao Y C, Sun H, Zhang Y L, et al. Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers [J]. Prog. Org. Coat., 2020, 139: 105470
[46] Wang Y L, Zhang S H, Wang P, et al. Electropolymerization and corrosion protection performance of the Nb:TiO2 nanofibers/polyaniline composite coating [J]. J. Taiwan Inst. Chem. Eng., 2019, 103: 190
doi: 10.1016/j.jtice.2019.07.015
[47] Xu H H, Zhu S D, Xia M Z, et al. Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: experimental and adsorption mechanism study [J]. J. Hazard. Mater., 2021, 402: 123815
doi: 10.1016/j.jhazmat.2020.123815
[48] Hou P C, Xing G J, Tian L Y, et al. Hollow carbon spheres/graphene hybrid aerogels as high-performance adsorbents for organic pollution [J]. Sep. Purif. Technol., 2019, 213: 524
doi: 10.1016/j.seppur.2018.12.032
[49] Lu C Y, Rooney D W, Jiang X, et al. Achieving high specific capacity of lithium-ion battery cathodes by modification with “N-O˙” radicals and oxygen-containing functional groups [J]. J. Mater. Chem., 2017, 5A: 24636
[1] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[2] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[3] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[4] 陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
[5] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[6] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[7] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[9] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[10] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[11] 万起展,陈宁宁,杨培培,钟莲,王燕华,王佳. 聚苯胺/改性石墨复合材料的电化学制备及其防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 428-434.
[12] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[13] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[14] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[15] 李小宝,徐利,刘怡宏,廖婷,李明田,崔学军. 酞菁铜二磺酸改性聚苯胺的制备及耐蚀性能[J]. 中国腐蚀与防护学报, 2016, 36(4): 306-312.