Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 352-358     CSTR: 32134.14.1005.4537.2022.102      DOI: 10.11902/1005.4537.2022.102
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
深海环境5A06铝合金腐蚀行为与表面特性
段体岗, 李祯, 彭文山, 张彭辉, 丁康康, 郭为民, 侯健, 马力, 许立坤()
中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment
DUAN Tigang, LI Zhen, PENG Wenshan, ZHANG Penghui, DING Kangkang, GUO Weimin, HOU Jian, MA Li, XU Likun()
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266237, China
全文: PDF(7618 KB)   HTML
摘要: 

通过自主研制的高效串型深海环境试验装置在西太平洋深海自然环境下开展了5A06铝合金的腐蚀行为实验,分析了5A06铝合金在500,800,1200和2000 m深海环境下暴露1 a的腐蚀形貌、腐蚀规律和电化学行为。实海结果显示,5A06铝合金的腐蚀形式以点蚀为主,平均腐蚀速率随海水深度增加先升高后降低,最大值出现在水深500 m处,为17 μm/a,是浅表海水环境下的3.1倍;而在800~2000 m水深范围,5A06铝合金腐蚀状况大大减弱,腐蚀速率在0.9~1.4 μm/a水平,800 m时仅为浅表海水的0.21倍,2000 m时则为0.14倍。电化学测试结果显示,试样自腐蚀电位随海水深度增加而正移,2000 m深度下达到-0.640 V (vs. Ag/AgCl);电荷转移阻抗随着试验深度的增加而显著增大,2000 m深度下达到了最大值,为1.91×108 Ω·cm2

关键词 西太平洋深海环境5A06铝合金界面特性    
Abstract

The deep-sea corrosion behavior of 5A06 Al-alloy was investigated through field exposure corrosion testing in the Western Pacific Ocean via a home-made cascade-type testing facility. After being exposed for 1 a in the marine environment at the depth of 500, 800, 1200 and 2000 m, respectively, the tested samples of 5A06 Al-alloy were examined by means of electrochemical test methods, scanning electron microscope with energy dispersive spectrometer and X-ray photoelectron spectroscope, in terms of electrochemical performance, corrosion morphology and corrosion characteristics etc. Results show that the average corrosion rate of 5A06 Al-alloy increases and then decreases with the increasing depth. The maximum average corrosion rate is 17 μm/a at the depth of 500 m, which is 3.1 times superior to that in the shallow. At the depth ranges from 800 m to 2000 m, the corrosion rate varies within 0.9-1.4 μm/a. Electrochemical test results show that the self-corrosion potential shifts positively with the increasing depth, while the charge transfer resistance increases.

Key wordsWestern Pacific Ocean    deep-sea corrosion    5A06 Al-alloy    surface characteristics
收稿日期: 2022-04-11      32134.14.1005.4537.2022.102
ZTFLH:  TD123  
作者简介: 段体岗,男,1987年生,博士,高级工程师

引用本文:

段体岗, 李祯, 彭文山, 张彭辉, 丁康康, 郭为民, 侯健, 马力, 许立坤. 深海环境5A06铝合金腐蚀行为与表面特性[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.
Tigang DUAN, Zhen LI, Wenshan PENG, Penghui ZHANG, Kangkang DING, Weimin GUO, Jian HOU, Li MA, Likun XU. Corrosion Characteristics of 5A06 Al-alloy Exposed in Natural Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 352-358.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.102      或      https://www.jcscp.org/CN/Y2023/V43/I2/352

图1  5A06铝合金在不同深度下暴露1 a的宏观腐蚀形貌
图2  5A06铝合金5A06在500,800,1200和2000 m深海环境下暴露1 a的SEM图
图3  不同深度下5A06铝合金腐蚀产物EDS结果图
Depth / mE0 / VI0 / A·cm-2Epit / VIp / A·cm-2
500-0.9074.71×10-8-0.4827.89×10-7
800-0.7629.93×10-8-0.4731.23×10-7
1200-0.7485.56×10-8-0.4783.45×10-7
2000-0.6402.36×10-8-0.4767.52×10-8
表1  5A06铝合金在暴露1 a后的Tafel分析结果
Depth / mRs / Ω·cm2Rf / Ω·cm2Qf / S·sec n ·cm-2nfRct / Ω·cm2Qdl / S·sec n ·cm-2nct
50027.288.31×1043.33×10-50.735.82×1052.29×10-60.82
80022.641.30×1042.60×10-50.684.31×1071.90×10-50.92
120029.952.84×1042.34×10-50.716.02×1072.50×10-51.00
200029.291.51×1042.90×10-50.681.91×1083.50×10-50.98
表2  EIS图谱拟合结果
图4  不同深度下5A06铝合金表面膜成分XPS分析
图5  5A06铝合金腐蚀速率随是实验深度变化及点蚀深度变化
图6  5A06铝合金在暴露1 a后的Tafel曲线
图7  5A06铝合金的EIS谱图及等效电路图
[1] Huang Y Z, Dong L H, Liu B Y. Current status and development trend of study on corrosion of aluminum alloy in deep sea [J]. J. Mater. Prot., 2014, 47(1): 44
[1] (黄雨舟, 董丽华, 刘伯洋. 铝合金深海腐蚀的研究现状及发展趋势 [J]. 材料保护, 2014, 47(1): 44)
[2] Chen Z J, Zhou X J, Chen H. Corrosion behavior of riveted pair of 6A01 Al-alloy-/304 stainless steel-plate used for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 507
[2] (陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 507)
[3] Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
[3] (丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455)
[4] Peng W C, Hou J, Guo W M. Research progress on the corrosion of aluminum alloy in deep ocean [J]. Dev. Appl. Mater., 2010, 25(1): 59
[4] (彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展 [J]. 材料开发与应用, 2010, 25(1): 59)
[5] Luciano G, Letardi P, Traverso P, et al. Corrosion behaviour of Al, Cu, and Fe alloys in deep sea environment [J]. La Metall. Ital., 2013, 105: 21
[6] Canepa E, Stifanese R, Merotto L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: a review and the KM3NeT test results [J]. Mar. Struct., 2018, 59: 271
doi: 10.1016/j.marstruc.2018.02.006
[7] Zhang X, Lin M Y, Yang G H, et al. Effect of Er on corrosion behavior of marine engineering 5052 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 686
[7] (张欣, 林木烟, 杨光恒 等. Er对海工5052铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 686)
[8] Venkatesan R. Studies on Corrosion of some structural materials in deep sea environment [D]. Bengaluru: India Department of Metallurgy India Institute of Science, 2000
[9] Boyd W K, Fink F W. Corrosion of Metals in Marine Environments [M]. Columbus: Metals and Ceramics Information Center, 1970
[10] Reinhart F M. Corrosion of materials in hydrospace-Part V-aluminum alloys [R]. Virginia: US Naval Civil Engineering Lab Port Hueneme, 1969
[11] Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
doi: 10.3724/SP.J.1037.2013.00143
[11] (孙飞龙, 李晓刚, 卢琳 等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219)
doi: 10.3724/SP.J.1037.2013.00143
[12] Duan T G, Xu L K, Ding K K, et al. Corrosion behaviour investigation of 460 low alloy steels exposed in the natural deep-sea environment [J]. Corros. Eng., Sci. Technol., 2019, 54: 485
doi: 10.1080/1478422X.2019.1619290
[13] Ding K K, Guo W M, Qiu R, et al. Corrosion behavior of Q235 steel exposed in deepwater of South China Sea [J]. J. Mater. Eng. Perform., 2018, 27: 4489
doi: 10.1007/s11665-018-3553-x
[14] Ding K K, Fan L, Guo W M, et al. Deep sea corrosion behavior of typical metal materials and research hotspot discussion [J]. Equip. Environ. Eng., 2019, 16(1): 107
[14] (丁康康, 范林, 郭为民 等. 典型金属材料深海腐蚀行为规律与研究热点探讨 [J]. 装备环境工程, 2019, 16(1): 107)
[15] Zou E M, Wang Z S, Ma C P. Temperature-salinity analysis of the west Pacific Ocean [J]. J. Oceanogr. Huanghai Bohai Seas, 1983, 1(2): 29
[15] (邹娥梅, 王宗山, 马成璞. 西太平洋温盐分析 [J]. 黄渤海海洋, 1983, 1(2): 29)
[16] Pajkossy T. Impedance of rough capacitive electrodes [J]. J. Electroanal. Chem., 1994, 364: 111
doi: 10.1016/0022-0728(93)02949-I
[17] Costa F R, Franco D V, Da Silva L M. Electrochemical impedance spectroscopy study of the oxygen evolution reaction on a gas-evolving anode composed of lead dioxide microfibers [J]. Electrochim. Acta, 2013, 90: 332
doi: 10.1016/j.electacta.2012.12.043
[1] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[2] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[3] 张彭辉, 李显超, 仝宏涛, 张宇, 陈诚. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1075-1080.
[4] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[5] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[7] 曹攀, 周婷婷, 白秀琴, 袁成清. 深海环境中的材料腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20.