Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 408-414     CSTR: 32134.14.1005.4537.2022.107      DOI: 10.11902/1005.4537.2022.107
  研究报告 本期目录 | 过刊浏览 |
超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究
贺志豪1,2, 贾建文1,2, 李阳3, 张威3, 徐芳泓3, 侯利锋1,2(), 卫英慧1,2
1.太原理工大学材料科学与工程学院 太原 030024
2.山西省金属材料腐蚀与防护工程技术研究中心 太原 030024
3.太原钢铁 (集团) 有限公司 先进不锈钢材料国家重点实验室 太原 030003
Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate
HE Zhihao1,2, JIA Jianwen1,2, LI Yang3, ZHANG Wei3, XU Fanghong3, HOU Lifeng1,2(), WEI Yinghui1,2
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.Shanxi Engineering Research Center for Corrosion & Protection, Taiyuan 030024, China
3.State Key Laboratory of Advanced Stainless Steel, Taiyuan Iron and Steel (Group) Co. Ltd., Taiyuan 030003, China
全文: PDF(3805 KB)   HTML
摘要: 

采用动电位极化、恒电位极化、Mott-Schottky以及XPS测试研究了254SMo、904L、316L 3种奥氏体不锈钢在模拟烟气冷凝液中的钝化行为。结果表明,在模拟烟气冷凝液中,随着Mo含量的增加,钝化区变宽,点蚀电位变正,维钝电流密度降低,使得254SMo钢耐蚀性增强,适用于烟气脱硫环境中。同时,随着冷凝液pH的增大,3种钢的平带电位负移,施主密度不断减小,表明其钝化膜的缺陷随着pH的增加而减少,耐蚀性增加。

关键词 超级奥氏体不锈钢烟气脱硫钝化行为    
Abstract

The passivation behavior of austenitic stainless steels 254SMo, 904L and 316L in a simulated flue gas desulfurization condensate was studied by potentiodynamic polarization, potentiostatic polarization, Mott-Schottky and XPS methods. The results show that, with the increase of Mo content, the passive region becomes larger, the pitting potential becomes more positive, and the passivation current density decreases for the steels. Among others, 254SMo steel exhibits the best corrosion resistance, which means that 254SMo steel is more suitable to be used in flue gas desulfurization environment. At the same time, with the increase of pH value of the simulated solution, the flat-band potential of the three steels all shifts negatively, and the value of the donor density would be decreased for their passivation film, indicating that the defects of the passivation film decreased, and the corrosion resistance would be increased.

Key wordssuper austenitic stainless steel    FGD    passivation behavior
收稿日期: 2022-04-12      32134.14.1005.4537.2022.107
ZTFLH:  TG174  
基金资助:中央引导地方科技发展专项(YDZX20191400002094);山西省科技重大专项(20191102006)
作者简介: 贺志豪,男,1996年生,硕士生

引用本文:

贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
Zhihao HE, Jianwen JIA, Yang LI, Wei ZHANG, Fanghong XU, Lifeng HOU, Yinghui WEI. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 408-414.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.107      或      https://www.jcscp.org/CN/Y2023/V43/I2/408

SteelCCrNiMoNSiMnCuFe
316L0.0516.910.62.0---0.51.6---Bal.
904L0.0220.125.34.4---2.02.01.3Bal.
254SMo0.0519.717.86.20.21.01.00.8Bal.
表1  3种不锈钢的化学成分
图1  254SMo,904L和316L不锈钢分别在不同pH下以及在pH=3时的动电位极化曲线
图2  3种不锈钢在不同pH下的M-S曲线
图3  254SMo钢在不同pH下形成的钝化膜中O 1s的XPS谱图
pHNd (1021)Efb
254SMo904L316L254SMo904L316L
11.091.352.47-0.09-0.08-0.07
30.570.931.97-0.10-0.09-0.08
50.360.661.12-0.21-0.15-0.12
表2  钝化膜施主密度ND和平带电位Efb(V)的值
图4  254SMo钢在pH=1和pH=3条件下形成的钝化膜中Cr 2p的XPS谱
图5  254SM不锈钢在pH=1和pH=3条件下形成的钝化膜中Fe 2p的XPS谱
图6  254SMo不锈钢在pH=1和3条件下形成的钝化膜中Mo 3d的XPS谱图
[1] Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
[1] (赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493)
[2] Wang C G, Wei J, Wei X, et al. Crevice corrosion behavior of several super stainless steels in a simulated corrosive environment of flue gas desulfurization process [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 43
[2] (王长罡, 魏洁, 魏欣 等. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 43)
[3] Zhou B, Jin Z H, Ge H H. Electrochemical corrosion behavior of 254SMo stainless steel in simulated condensate of blast furnace gas [J]. Corros. Sci. Prot. Technol., 2018, 30: 163
[3] (周彬, 金志浩, 葛红花. 254SMo不锈钢在高炉煤气模拟冷凝液中的电化学腐蚀行为 [J]. 腐蚀科学与防护技术, 2018, 30: 163)
[4] He J J, Xiang X W. A review of chimney corrosion study and anticorrosion material research in WFGD [J]. Environ. Technol., 2011, 35(4): 33
[4] (何佳杰, 向贤伟. 湿法烟气脱硫中烟囱腐蚀及其防腐材料研究现状 [J]. 环境技术, 2011, 35(4): 33)
[5] Zhang Y G, Li S Y, Fan H Q, et al. Corrosion behavior of stainless steel in flue gas desulphurization system [J]. Mater. Prot., 2010, 43(3): 64
[5] (张贻刚, 李淑英, 范洪强 等. 不锈钢在烟气脱硫系统中的腐蚀行为 [J]. 材料保护, 2010, 43(3): 64)
[6] He Y S, Yoo K B, Park J C, et al. TEM study the corrosion behavior of the low alloy steels developed for flue gas desulfurization system [J]. Mater. Charact., 2018, 142: 540
doi: 10.1016/j.matchar.2018.06.007
[7] Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
doi: 10.1016/j.corsci.2019.108405
[8] Jansen P, Hansen V, Jensen T. Corrosion experience with carbon steel in spray absorption FGD plant [J]. Mater. Corros., 1992, 43: 310
[9] Roth P. Corrosion-resistant special steels for flue gas desulphurisation plants [J]. Mater. Corros., 1992, 43: 275
[10] Darowicki K, Krakowiak S. Durability evaluation of Ni-Cr-Mo super alloys in a simulated scrubbed flue gas environment [J]. Anti-Corros. Methods Mater., 1999, 46: 19
doi: 10.1108/00035599910252703
[11] Feng H. Research on corrosion behaviour of super austenitic stainless steel with high Mo and N in typically extreme environments [D]. Shenyang: Northeastern University, 2014
[11] (冯浩. 高钼高氮超级奥氏体不锈钢在典型极端环境中的腐蚀行为研究 [D]. 沈阳: 东北大学, 2014)
[12] Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
doi: 10.1016/j.corsci.2006.10.032
[13] Chen X, Xiong Q Y, Zhu F, et al. The effects of chloride anions on corrosion and passivation behavior of 254SMO stainless steel in water absorbed of blast furnace gas (BFG) [J]. Int. J. Electrochem. Sci., 2018, 13: 1656
[14] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
[15] Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of temperature on passive film formation of UNS N08031 Cr-Ni alloy in phosphoric acid contaminated with different aggressive anions [J]. Electrochim. Acta, 2013, 111: 552
doi: 10.1016/j.electacta.2013.08.040
[16] Liu X F. Research on pitting behavior of 904L and 254SMO in high chloride-containing acid environment [D]. Beijing: Beijing University of Chemical Technology, 2017
[16] (刘欣芳. 904L和254SMO超级奥氏体不锈钢在高氯酸性环境中的点蚀行为研究 [D]. 北京: 北京化工大学, 2017)
[17] Chao K L, Liao H Y, Shyue J J, et al. Corrosion behavior of high nitrogen nickel-free Fe-16Cr-Mn-Mo-N stainless steels [J]. Metall. Mater. Trans., 2014, 45B: 381
[18] Zhang H W, Wang K. The influence of environmental factors on the pitting potential of stainless steel [J]. J. Beijing Iron Steel Inst., 1985, 7(3): 104
[18] (张蕙文, 王旷. 环境因素对不锈钢点蚀电位的影响 [J]. 北京钢铁学院学报, 1985, 7(3): 104)
[19] Zhang Y, Kong L Z, Lu W, et al. Electrochemical properties of passive film on stainless steel surface in nitric acid solution [J]. Corros. Prot., 2018, 39: 906
[19] (张瑜, 孔令真, 路伟 等. 在硝酸溶液中不锈钢表面钝化膜的电化学特性 [J]. 腐蚀与防护, 2018, 39: 906)
[1] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[2] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[3] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[4] 王长罡,魏洁,魏欣,穆鑫,薛芳,董俊华,柯伟,李国平. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[5] 尹开锯,邱绍宇,唐睿,洪晓峰,张乐福,张强. 超级奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.