Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 391-398     CSTR: 32134.14.1005.4537.2022.109      DOI: 10.11902/1005.4537.2022.109
  研究报告 本期目录 | 过刊浏览 |
海水流速对B10/B30电偶腐蚀行为影响规律研究
邢少华1(), 刘近增1,2, 白舒宇1, 钱峣1,2, 张大磊2, 马力1
1.中国船舶集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
2.中国石油大学 (华东) 材料科学与工程学院 青岛 266580
Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling
XING Shaohua1(), LIU Jinzeng1,2, BAI Shuyu1, QIAN Yao1,2, ZHANG Dalei2, MA Li1
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
全文: PDF(7340 KB)   HTML
摘要: 

B10和B30铜镍合金分别为船舶海水管路和冷却器的主要材料,二者由于镍含量不同腐蚀电位不同,管路与冷却设备连接后,B10和B30存在电偶腐蚀风险,特别是在流动海水加速腐蚀介质和腐蚀产物扩散工况条件。为控制B10/B30电偶腐蚀以延长海水管路系统使用寿命,本文通过电化学法测试了B10和B30管状偶对在静态以及1、3和5 m/s流速海水中的电偶电位和电偶电流,分析电偶腐蚀速率随时间和流速的变化规律。研究结果表明:在静态海水中,B10与B30的电偶腐蚀倾向较小,试验初期B10作为阳极腐蚀略有增加,实验40 h后电偶电流趋近于零;流动海水中,B10阳极极化电流密度和B30阴极极化电流密度显著增加,B10始终作为阳极电偶腐蚀显著加剧,1 m/s流速下的电偶腐蚀速率是静态下的79倍,且随着海水流速的增大,B10/B30电偶电流密度增大,电偶腐蚀速率加快,混合电位理论分析表明B10/B30电偶腐蚀速率是由B10阳极反应动力学和B30阴极反应动力学共同控制。

关键词 海水管路系统铜镍合金流动海水电偶腐蚀    
Abstract

Copper-nickel alloys B10 and B30 are the main materials of marine seawater piping and coolers respectively. The two alloys have different corrosion potential due to the different nickel content, and thus there is a risk of galvanic corrosion for the couple of B10 and B30 when the pipes are connected to the cooling equipment. Especially in the working conditions of flowing seawater, the diffusion of corrosive media and corrosion products may be aggravated. In order to control the corrosion of the galvanic couple B10/B30 and prolong the service life of seawater pipeline, in this paper, the galvanic potential and galvanic current of the couple B10 and B30 in static and flowing seawater (1, 3 and 5 m/s) are monitored in situ, to acquire the variation of the galvanic corrosion rate with time and flow rate. The results show that, in static seawater, the galvanic corrosion tendency of the couple B10/B30 is small, and the corrosion rate of B10 as the anode slightly increases at the beginning of the experiment, while after 40 h test, the galvanic current approaches zero. In flowing seawater, the anodic polarization current density of B10 and the cathodic polarization current density of B30 increases significantly, B10 always acts as anode and the galvanic corrosion is significantly intensified, the galvanic corrosion rate at flow speed 1 m/s is 79 times that in static seawater. As the flow speed of seawater increases, the current density of the couple B10/B30 increases and the corrosion rate of the couples accelerates. The galvanic corrosion rate of the couple B10/B30 is controlled by both the B10 anodic reaction and the B30 cathodic reaction according to mix potential analysis.

Key wordsseawater pipeline    copper nickel alloy    flowing seawater    galvanic corrosion
收稿日期: 2022-04-14      32134.14.1005.4537.2022.109
ZTFLH:  TG174  
作者简介: 邢少华,男,1981年生,博士,高级工程师

引用本文:

邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
Shaohua XING, Jinzeng LIU, Shuyu BAI, Yao QIAN, Dalei ZHANG, Li MA. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 391-398.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.109      或      https://www.jcscp.org/CN/Y2023/V43/I2/391

图1  B10和B30试样在不同流速海水中的腐蚀电位
图2  B10/B30偶对电偶电位随时间变化曲线
图3  B10/B30偶对在不同流速海水中电偶电流密度随时间变化曲线
图4  电偶电流密度和电偶电位随流速变化曲线
图5  B10/ B30偶对在不同流速海水的腐蚀形貌
图6  B10电偶腐蚀产物微观形貌图
Velocity (m/s)PositionFeClCuNi
0Whole surface1.793.6958.5710.60
1Whole surface1.114.9853.4910.02
3A0..936.2346.3010.61
B0.831.2470.139.69
5A1.22---45.6616.84
B1.24---59.9815.88
表1  偶接B10腐蚀产物元素组成 (mass fraction / %)
图7  不同流速海水中偶接B10去除腐蚀产物后表面微观形貌图
图8  B10/B30偶对不同流速海水中电偶腐蚀动力学分析
图9  B10/B30偶对在静态海水中的电偶腐蚀机理图
图10  B10/B30偶对在流动海水中的电偶腐蚀机理图
[1] Wang C L, Wu J H, Li Q F. Recent advances and prospect of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416
[1] (王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望 [J]. 中国腐蚀与防护学报, 2010, 30: 416)
[2] Yang S W, Xi H Z, Xie F Z, et al. Study of naval vessel galvanic corrosion [J]. J. Harbin Eng. Univ., 2000, 21(6): 34
[2] (杨世伟, 席慧智, 谢辅洲 等. 舰船材料的电偶腐蚀研究 [J]. 哈尔滨工程大学学报, 2000, 21(6): 34)
[3] Wang H B, Fang Z G. Control of galvanic corrosion of dissimilar metals of seawater pipelines in naval vessels [J]. Corros. Sci. Prot. Technol., 2007, 19: 145
[3] (王虹斌, 方志刚. 舰船海水管系异金属电偶腐蚀的控制 [J]. 腐蚀科学与防护技术, 2007, 19: 145)
[4] Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4+ [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
[4] (王家明, 杨昊东, 杜敏 等. B10铜镍合金在高浓度NH4 + 污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609)
[5] Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
[6] Zhang Z Q, Guo Z L, Lei Z F. Applications of copper alloy in shipbuilding [J]. Dev. Appl. Mater., 2006, 21(5): 43
[6] (张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用 [J]. 材料开发与应用, 2006, 21(5): 43)
[7] Peng W S, Duan T G, Hou J, et al. Corrosion behavior of B10 copper-nickel alloy after full immersion in indoor simulated seawater and real seawater [J]. Equip. Environ. Eng., 2020, 17(8): 63
[7] (彭文山, 段体岗, 侯健 等. 室内与实海环境中B10铜镍合金海水全浸腐蚀研究 [J]. 装备环境工程, 2020, 17(8): 63)
[8] Tao H, Yu Y, Zhao G C, et al. Standard status and proposal of B30 copper alloy heat transfer tube for condensers of naval ships [J]. Dev. Appl. Mater., 2021, 36(1): 96
[8] (陶欢, 郁炎, 赵国超 等. 舰船冷凝器用B30铜合金传热管标准体系 [J]. 材料开发与应用, 2021, 36(1): 96)
[9] Wei M M, Yang B J, Liu Y Y, et al. Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 513
[9] (魏木孟, 杨博均, 刘洋洋 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36: 513)
[10] Yang F, Zheng Y G, Yao Z M, et al. Study on erosion-corrosion behavior of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater [J]. J. Chin. Soc. Corros. Prot., 1999, 19(4): 16
[10] (杨帆, 郑玉贵, 姚治铭 等. 铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为 [J]. 中国腐蚀与防护学报, 1999, 19(4): 16)
[11] Li Q F, Li C H, Xu L K, et al. Corrosion behavior of B30 Cu-Ni alloy and anti -corrosion coating in marine environment [J]. Trans. Nonferrous Met. Soc. China, 2007, 17 (Spec. 1): 161
[12] Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
doi: 10.1016/j.corsci.2006.07.003
[13] Harvey T J, Wharton J A, Wood R J K. Development of synergy model for erosion-corrosion of carbon steel in a slurry pot [J]. Tribol.-Mater., Suf. Interfaces, 2007, 1: 33
[14] Huang G Q. Corrosion of copper alloys in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 65
[14] (黄桂桥. 铜合金在海洋飞溅区的腐蚀 [J]. 中国腐蚀与防护学报, 2005, 25: 65)
[15] Sun B K, Li N, Du M. Galvanic corrosion behavior of B10/H62 couple in Seawater of different flowing rates [J]. Mater. Prot., 2011, 44(7): 20
[15] (孙保库, 李宁, 杜敏. 不同流速海水中B10/H62电偶腐蚀规律 [J]. 材料保护, 2011, 44(7): 20)
[16] Zhang H L, Li N, Xue J J, et al. Galvanic corrosion and insulation control between industrial pure titanium and albata [J]. Corros. Prot., 2010, 31: 615
[16] (张海丽, 李宁, 薛建军 等. 工业纯钛与铜镍合金的电偶腐蚀及电绝缘控制 [J]. 腐蚀与防护, 2010, 31: 615)
[17] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
[17] (雷冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497)
[18] Zhu X L, Lin L Y, Xu J, et al. Review of corrosion product films of Cu-Ni alloys in seawater [J]. Mater. Sci. Technol., 1997, 5(2): 24
[18] (朱小龙, 林乐耘, 徐杰 等. Cu-Ni合金海水蚀产物膜研究进展 [J]. 材料科学与工艺, 1997, 5(2): 24)
[19] Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20(1): 12
[19] (杜娟, 王洪仁, 杜敏 等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20(1): 12)
[20] Efird K D. Effect of fluid dynamics on the corrosion of copper-base alloys in sea water [J]. Corrosion, 1977, 33: 3
doi: 10.5006/0010-9312-33.1.3
[1] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[3] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[5] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[6] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[7] 陈翰林, 马力, 黄国胜, 杜敏. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[8] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[9] 刘近增, 邢少华, 钱峣, 张大磊, 马力. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[10] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[11] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[12] 陈翰林, 马力, 黄国胜, 杜敏. 溶解氧和流速对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
[13] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[14] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[15] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.