Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 242-250     CSTR: 32134.14.1005.4537.2022.111      DOI: 10.11902/1005.4537.2022.111
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
基于表面微结构复制与润湿性调控的水下仿生防污技术研究进展
王利1, 马力1, 雷黎2(), 崔中雨2
1.中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
2.中国海洋大学材料科学与工程学院 青岛 266100
Research Progress of Underwater Bionic Antifouling Technology Based on Surface Microtopography Replication and Wettability Control
WANG Li1, MA Li1, LEI Li2(), CUI Zhongyu2
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(11363 KB)   HTML
摘要: 

海洋生物污损会对人类海洋活动和海洋工业产生诸多不利影响,传统使用有机锡或金属离子杀生剂的防污策略会导致环境污染与生态系统的破坏,大自然生物有机体所展示的天然抗粘附机制为绿色防污材料研发带来新的灵感。受生物表皮物理结构及仿生防污机制启发,本文从生物表皮微结构研究入手,综述了仿生微结构复刻与表面润湿性调控两种水下仿生防生物污损策略的研究进展,并展望其前景。

关键词 水下仿生防生物污损表面微结构润湿性    
Abstract

Marine biofouling has many adverse effect on human marine activities and marine industry. The traditional antifouling strategies of using biocide such as organic tin and metal ions can lead to environmental pollution and ecosystem destruction. The natural anti-adhesion mechanism exhibited by organisms brings a new idea to the research and development of green antifouling materials. Inspired by biophysical epidermis physical structure and bionic antifouling mechanism, this paper reviews the research progress of two underwater bionic antifouling strategies, namely the bionic microtopography reproduction and the surface wettability regulation, and their future development is also prospected.

Key wordsunderwater    biomimetic    antifouling    surface microtopography    wettability
收稿日期: 2022-04-15      32134.14.1005.4537.2022.111
ZTFLH:  TB391  
基金资助:海洋防务创新基金(JJ202072503)
作者简介: 王利,男,1978年生,研究员

引用本文:

王利, 马力, 雷黎, 崔中雨. 基于表面微结构复制与润湿性调控的水下仿生防污技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 242-250.
Li WANG, Li MA, Li LEI, Zhongyu CUI. Research Progress of Underwater Bionic Antifouling Technology Based on Surface Microtopography Replication and Wettability Control. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 242-250.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.111      或      https://www.jcscp.org/CN/Y2023/V43/I2/242

图1  几种生物表面微形貌[7-9]
图2  几种仿生微结构复刻研究[8,12-18]
图3  PSPMA接枝到仿生三叶草结构表面[16];SI-ATRP法将PSPMA接枝到天然毛皮[23];两性磺基甜菜碱功能化二氧化硅NPs自旋包覆在金基体表面[28]
图4  PDMS/PU共混体系[44];PDMS与纳米磁铁矿复合材料的自清洁机理[45]
图5  向多孔固体注入具有低表面能、化学惰性的液体形成均匀的SLIPS[55]
图6  SLIPS构建示意图和水滴在的11.3°SLIPS斜面上滑落示意图[57]
图7  半交互式聚合物网络制备工艺及SEM图像和水下油接触角[61]
[1] Fu J M, Zhang H, Guo Z B, et al. Combat biofouling with microscopic ridge-like surface morphology: a bioinspired study [J]. J. R. Soc. Interface, 2018, 15: 20170823
doi: 10.1098/rsif.2017.0823
[2] Han X, Wu J H, Zhang X H, et al. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61: 46
doi: 10.1016/j.jmst.2020.07.002
[3] Almeida E, Diamantino T C, De Sousa O. Marine paints: the particular case of antifouling paints [J]. Prog. Org. Coat., 2007, 59: 2
doi: 10.1016/j.porgcoat.2007.01.017
[4] Schultz M P, Bendick J A, Holm E R, et al. Economic impact of biofouling on a naval surface ship [J]. Biofouling, 2011, 27: 87
doi: 10.1080/08927014.2010.542809 pmid: 21161774
[5] Selim M S, El-Safty S A, Shenashen M A, et al. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings [J]. J. Mater. Chem., 2020, 8B: 3701
[6] Maan A M C, Hofman A H, De Vos W M, et al. Recent developments and practical feasibility of polymer-based antifouling coatings [J]. Adv. Funct. Mater., 2020, 30: 2000936
doi: 10.1002/adfm.202000936
[7] Bai X Q, Xie G T, Fan H, et al. Study on biomimetic preparation of shell surface microstructure for ship antifouling [J]. Wear, 2013, 306: 285
doi: 10.1016/j.wear.2012.11.020
[8] Brzozowska A M, Parra-Velandia F J, Quintana R, et al. Biomimicking micropatterned surfaces and their effect on marine biofouling [J]. Langmuir, 2014, 30: 9165
doi: 10.1021/la502006s pmid: 25017490
[9] Bixler G D, Bhushan B. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces [J]. Nanoscale, 2013, 5: 7685
doi: 10.1039/c3nr01710a pmid: 23884183
[10] Ermis M, Antmen E, Hasirci V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective [J]. Bioact. Mater., 2018, 3: 355
doi: 10.1016/j.bioactmat.2018.05.005 pmid: 29988483
[11] Chen L R, Duan Y Y, Cui M, et al. Biomimetic surface coatings for marine antifouling: natural antifoulants, synthetic polymers and surface microtopography [J]. Sci. Total Environ., 2021, 766: 144469
doi: 10.1016/j.scitotenv.2020.144469
[12] Schumacher J F, Aldred N, Callow M E, et al. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids [J]. Biofouling, 2007, 23: 307
pmid: 17852066
[13] Chen Z F, Zhao W J, Xu J H, et al. Designing environmentally benign modified silica resin coatings with biomimetic textures for antibiofouling [J]. RSC Adv., 2015, 5: 36874
doi: 10.1039/C5RA04658K
[14] Gangadoo S, Chandra S, Power A, et al. Biomimetics for early stage biofouling prevention: templates from insect cuticles [J]. J. Mater. Chem., 2016, 4B: 5747
[15] Liu Y H, Li G J. A new method for producing “Lotus Effect” on a biomimetic shark skin [J]. J. Colloid Interface Sci., 2012, 388: 235
doi: 10.1016/j.jcis.2012.08.033
[16] Wan F, Pei X W, Yu B, et al. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release [J]. ACS Appl. Mater. Interfaces, 2012, 4: 4557
doi: 10.1021/am300912w
[17] Chapman J, Hellio C, Sullivan T, et al. Bioinspired synthetic macroalgae: examples from nature for antifouling applications [J]. Int. Biodeterior. Biodegrad., 2014, 86: 6
doi: 10.1016/j.ibiod.2013.03.036
[18] Zhao L M, Chen R R, Lou L J, et al. Layer-by-layer-assembled antifouling films with surface microtopography inspired by Laminaria japonica [J]. Appl. Surf. Sci., 2020, 511: 145564
doi: 10.1016/j.apsusc.2020.145564
[19] Sun K, Yang H, Xue W, et al. Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel [J]. Appl. Surf. Sci., 2018, 436: 263
doi: 10.1016/j.apsusc.2017.12.012
[20] Young T. III. An essay on the cohesion of fluids [J]. Philos. Trans., 1805, 95: 65
[21] Guan Y, Chen R R, Sun G H, et al. The mussel-inspired micro-nano structure for antifouling: a flowering tree [J]. J. Colloid Interface Sci., 2021, 603: 307
doi: 10.1016/j.jcis.2021.06.095
[22] Bing W, Tian L M, Wang Y J, et al. Bio-inspired non-bactericidal coating used for antibiofouling [J]. Adv. Mater. Technol., 2019, 4: 1800480
doi: 10.1002/admt.201800480
[23] Wan F, Ye Q, Yu B, et al. Multiscale hairy surfaces for nearly perfect marine antibiofouling [J]. J. Mater. Chem., 2013, 1B: 3599
[24] Liu Y L, Zhang D, Ren B P, et al. Molecular simulations and understanding of antifouling zwitterionic polymer brushes [J]. J. Mater. Chem., 2020, 8B: 3814
[25] Song B Y, Zhang E S, Han X F, et al. Engineering and application perspectives on designing an antimicrobial surface [J]. ACS Appl. Mater. Interfaces, 2020, 12: 21330
doi: 10.1021/acsami.9b19992
[26] Li D X, Wei Q L, Wu C X, et al. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems [J]. Adv. Colloid Interface Sci., 2020, 278: 102141
doi: 10.1016/j.cis.2020.102141
[27] Higaki Y, Nishida J, Takenaka A, et al. Versatile inhibition of marine organism settlement by zwitterionic polymer brushes [J]. Polym. J., 2015, 47: 811
doi: 10.1038/pj.2015.77
[28] Knowles B R, Wagner P, Maclaughlin S, et al. Silica nanoparticles functionalized with zwitterionic sulfobetaine siloxane for application as a versatile antifouling coating system [J]. ACS Appl. Mater. Interfaces, 2017, 9: 18584
doi: 10.1021/acsami.7b04840
[29] Jin J, Kim J Y, Choi W, et al. Incorporation of carboxybetaine methacrylate into poly (methyl methacrylate) to prevent multi-species biofilm formation [J]. J. Ind. Eng. Chem., 2020, 86: 194
doi: 10.1016/j.jiec.2020.03.003
[30] Wang W, Lu Y, Zhu H, et al. Superdurable coating fabricated from a double-sided tape with long term “zero” bacterial adhesion [J]. Adv. Mater., 2017, 29: 1606506
doi: 10.1002/adma.201606506
[31] Zhang L L, Sha J A, Chen R R, et al. Surface plasma Ag-decorated Bi5O7I microspheres uniformly distributed on a zwitterionic fluorinated polymer with superfunctional antifouling property [J]. Appl. Catal., 2020, 271B: 118920
[32] Zhang L L, Sha J A, Chen R R, et al. Three-dimensional flower-like shaped Bi5O7I particles incorporation zwitterionic fluorinated polymers with synergistic hydration-photocatalytic for enhanced marine antifouling performance [J]. J. Hazard. Mater., 2020, 389: 121854
doi: 10.1016/j.jhazmat.2019.121854
[33] Xu X Y, Chen R R, Sun G H, et al. A facile hydrophilic modification strategy initiated by flame treatment of silicone coatings for marine antifouling application [J]. Appl. Surf. Sci., 2022, 580: 152177
doi: 10.1016/j.apsusc.2021.152177
[34] Guo H S, Yang J, Zhao W Q, et al. Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating [J]. Chem. Eng. J., 2019, 374: 1353
doi: 10.1016/j.cej.2019.06.025
[35] Zhao W Q, Yang J, Guo H S, et al. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix [J]. Chem. Eng. Sci., 2019, 207: 790
doi: 10.1016/j.ces.2019.06.042
[36] Zhang H, Li Y, Tian S, et al. A switchable zwitterionic ester and capsaicin copolymer for multifunctional marine antibiofouling coating [J]. Chem. Eng. J., 2022, 436: 135072
doi: 10.1016/j.cej.2022.135072
[37] Yang H C, Guo X J, Chen R R, et al. A hybrid sponge with guanidine and phytic acid enriched surface for integration of antibiofouling and uranium uptake from seawater [J]. Appl. Surf. Sci., 2020, 525: 146611
doi: 10.1016/j.apsusc.2020.146611
[38] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
doi: 10.1021/ie50320a024
[39] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
doi: 10.1039/tf9444000546
[40] Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces [J]. Ann. Bot., 1997, 79: 667
doi: 10.1006/anbo.1997.0400
[41] Aishwarya S, Shanthi J, Swathi R. Surface energy calculation using Hamaker’s constant for polymer/silane hydrophobic thin films [J]. Mater. Lett., 2019, 253: 409
doi: 10.1016/j.matlet.2019.07.123
[42] Zhou H, Wang H X, Niu H T, et al. Recent progress in durable and self-healing super-nonwettable fabrics [J]. Adv. Mater. Interfaces, 2018, 5: 1800461
doi: 10.1002/admi.201800461
[43] Bodkhe R B, Stafslien S J, Daniels J, et al. Zwitterionic siloxane-polyurethane fouling-release coatings [J]. Prog. Org. Coat., 2015, 78: 369
[44] Sommer S A, Byrom J R, Fischer H D, et al. Effects of pigmentation on siloxane-polyurethane coatings and their performance as fouling-release marine coatings [J]. J. Coat. Technol. Res., 2011, 8: 661
doi: 10.1007/s11998-011-9340-3
[45] Selim M S, Elmarakbi A, Azzam A M, et al. Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints [J]. Prog. Org. Coat., 2018, 116: 21
[46] Selim M S, Yang H, Wang F Q, et al. Silicone/ZnO nanorod composite coating as a marine antifouling surface [J]. Appl. Surf. Sci., 2019, 466: 40
doi: 10.1016/j.apsusc.2018.10.004
[47] Selim M S, El-Safty S A, El-Sockary M A, et al. Smart photo-induced silicone/TiO2 nanocomposites with dominant [110] exposed surfaces for self-cleaning foul-release coatings of ship hulls [J]. Mater. Design, 2016, 101: 218
[48] Selim M S, Shenashen M A, El-Safty S A, et al. Recent progress in marine foul-release polymeric nanocomposite coatings [J]. Prog. Mater. Sci., 2017, 87: 1
doi: 10.1016/j.pmatsci.2017.02.001
[49] Selim M S, Yang H, El-Safty S A, et al. Superhydrophobic coating of silicone/β-MnO2 nanorod composite for marine antifouling [J]. Colloids Surf., 2019, 570A: 518
[50] Selim M S, Yang H, Wang F Q, et al. Superhydrophobic silicone/SiC nanowire composite as a fouling release coating material [J]. J. Coat. Technol. Res., 2019, 16: 1165
doi: 10.1007/s11998-019-00192-8
[51] Krishnan S, Wang N, Ober C K, et al. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom navicula and the green alga ulva [J]. Biomacromolecules, 2006, 7: 1449
doi: 10.1021/bm0509826
[52] Martinelli E, Suffredini M, Galli G, et al. Amphiphilic block copolymer/poly (dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release [J]. Biofouling, 2011, 27: 529
doi: 10.1080/08927014.2011.584972 pmid: 21614701
[53] Pollack K A, Imbesi P M, Raymond J E, et al. Hyperbranched fluoropolymer-polydimethylsiloxane-poly (ethylene glycol) cross-Linked terpolymer networks designed for marine and biomedical applications: heterogeneous nontoxic antibiofouling surfaces [J]. ACS Appl. Mater. Interfaces, 2014, 6: 19265
doi: 10.1021/am505296n
[54] Galli G, Barsi D, Martinelli E, et al. Copolymer films containing amphiphilic side chains of well-defined fluoroalkyl-segment length with biofouling-release potential [J]. RSC Adv., 2016, 6: 67127
doi: 10.1039/C6RA15104C
[55] Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
[56] Epstein A K, Wong T S, Belisle R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 13182
doi: 10.1073/pnas.1201973109 pmid: 22847405
[57] Qiu Z H, Qiu R, Xiao Y M, et al. Slippery liquid-infused porous surface fabricated on CuZn: a barrier to abiotic seawater corrosion and microbiologically induced corrosion [J]. Appl. Surf. Sci., 2018, 457: 468
doi: 10.1016/j.apsusc.2018.06.139
[58] Kim P, Kreder M J, Alvarenga J, et al. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates [J]. Nano Lett., 2013, 13: 1793
doi: 10.1021/nl4003969 pmid: 23464578
[59] Ware C S, Smith-Palmer T, Peppou-Chapman S, et al. Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces [J]. ACS Appl. Mater. Interfaces, 2018, 10: 4173
doi: 10.1021/acsami.7b14736
[60] Wang P, Zhang D, Sun S M, et al. Fabrication of slippery lubricant-infused porous surface with high underwater transparency for the control of marine biofouling [J]. ACS Appl. Mater. Interfaces, 2017, 9: 972
doi: 10.1021/acsami.6b09117
[61] Yang W F, Lin P, Cheng D C, et al. Contribution of charges in polyvinyl alcohol networks to marine antifouling [J]. ACS Appl. Mater. Interfaces, 2017, 9: 18295
doi: 10.1021/acsami.7b04079
[62] Su M J, Liu Y, Zhang Y H, et al. Robust and underwater superoleophobic coating with excellent corrosion and biofouling resistance in harsh environments [J]. Appl. Surf. Sci., 2018, 436: 152
doi: 10.1016/j.apsusc.2017.11.215
[63] Chen K L, Zhou S X, Wu L M. Self-healing underwater superoleophobic and antibiofouling coatings based on the assembly of hierarchical microgel spheres [J]. ACS Nano, 2016, 10: 1386
doi: 10.1021/acsnano.5b06816 pmid: 26687925
[64] Li Y K, Chen R R, Feng Y H, et al. Synthesis of amphiphilic acrylate boron fluorinated polymers with antifouling behavior [J]. Ind. Eng. Chem. Res., 2019, 58: 8016
doi: 10.1021/acs.iecr.8b06337
[65] Ge J L, Zhang J C, Wang F, et al. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation [J]. J. Mater. Chem., 2017, 5A: 497
[66] Sun X H, Li Q, Guo Z R, et al. Study on the core-shell reversion of PSBMA-b-PLMA nanoparticles for the fabrication of antifouling coatings [J]. ACS Appl. Mater. Interfaces, 2019, 11: 21323
doi: 10.1021/acsami.9b02258
[67] Gudipati C S, Greenlief C M, Johnson J A, et al. Hyperbranched fluoropolymer and linear poly (ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: an insight into the surface compositions, topographies, and morphologies [J]. J. Polym. Sci., 2004, 42A: 6193
[68] Galhenage T P, Webster D C, Moreira A M S, et al. Poly (ethylene) glycol-modified, amphiphilic, siloxane-polyurethane coatings and their performance as fouling-release surfaces [J]. J. Coat. Technol. Res., 2017, 14: 307
doi: 10.1007/s11998-016-9862-9
[69] Leonardi A K, Ober C K. Polymer-based marine antifouling and fouling release surfaces: strategies for synthesis and modification [J]. Annu. Rev. Chem. Biomol. Eng., 2019, 10: 241
doi: 10.1146/annurev-chembioeng-060718-030401 pmid: 31173523
[1] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[3] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[4] 史志明; 林海潮; 曹楚南 . 水下机器人的电化学防护研究*[J]. 中国腐蚀与防护学报, 1999, 19(4): 245-249 .