Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 421-427     CSTR: 32134.14.1005.4537.2022.115      DOI: 10.11902/1005.4537.2022.115
  研究报告 本期目录 | 过刊浏览 |
超级奥氏体不锈钢的热腐蚀行为及机理研究
韩瑞珠1, 贾建文1, 李阳2, 张威2, 徐芳泓2, 侯利锋1(), 卫英慧1
1.太原理工大学材料科学与工程学院 山西省金属材料腐蚀与防护工程技术研究中心 太原 030024
2.太原钢铁 (集团) 有限公司 先进不锈钢材料国家重点实验室 太原 030003
Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃
HAN Ruizhu1, JIA Jianwen1, LI Yang2, ZHANG Wei2, XU Fanghong2, HOU Lifeng1(), WEI Yinghui1
1.Shanxi Province Metal Material Corrosion and Protection Engineering Technology Research Center, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2.State Key Laboratory of Advanced Stainless Steel, Taiyuan Iron and Steel (Group) Co. Ltd., Taiyuan 030003, China
全文: PDF(11443 KB)   HTML
摘要: 

研究了254SMo、904L和317L超级奥氏体不锈钢在650、700和750 ℃下30%Na2SO4+30%K2SO4+20%NaCl+20%KCl混合熔盐中的热腐蚀行为。通过腐蚀动力学以及腐蚀产物成分和形貌分析,探究了3种不锈钢在熔融混合盐中的高温腐蚀机理。结果表明,3种不锈钢在不同温度下均表现为失重,耐蚀性顺序为254SMo>904L>317L不锈钢;熔融的氯盐加速腐蚀,主要遵循“电化学腐蚀+氯活性腐蚀”腐蚀机制,硫酸盐通过“碱性助溶”机制溶解和破坏腐蚀层,从而造成严重的内部和晶间腐蚀;在两种腐蚀机制中,以氯腐蚀为主,硫腐蚀为辅;提高Mo和Ni含量可以在一定程度上改善奥氏体不锈钢的耐高温腐蚀性。

关键词 奥氏体不锈钢热腐蚀腐蚀动力学    
Abstract

The high temperature corrosion properties of three super austenitic stainless steels 254SMo, 904L and 317L, were studied in a molten salts mixture of 30%Na2SO4+30%K2SO4+20%NaCl+20%KCl at 650, 700 and 750 ℃ for 50 h, respectively. By virtue of examination of the corrosion kinetics, composition and morphology of corrosion products, the high-temperature corrosion mechanism of three kinds of austenitic stainless steels in the molten salts' mixture was explored. The results show that all the three steels exhibit mass loss at different temperatures, and the order of corrosion resistance of the three steels can be ranked as follows: 254SMo>904L>317L. Molten chloride salts would accelerate the corrosion of steels and the corrosion mechanism of which may be ascribed to electrochemical corrosion and chlorine active corrosion. Sulfates dissolve and destroy the corrosion products by means of alkaline co-dissolution and thus result in serious internal and intergranular corrosion. Although all three steels are subjected simultaneously to both sulfate salt and chloride salt induced corrosion, the chloride salts are predominant in terms of the severity of corrosion. However, the addition of Mo and Ni can improve the high temperature corrosion resistance of austenitic stainless steel to a certain extent.

Key wordsaustenitic stainless steel    high corrosion    corrosion kinetics
收稿日期: 2022-04-16      32134.14.1005.4537.2022.115
ZTFLH:  TG174  
作者简介: 韩瑞珠,男,1995年生,硕士生

引用本文:

韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
Ruizhu HAN, Jianwen JIA, Yang LI, Wei ZHANG, Fanghong XU, Lifeng HOU, Yinghui WEI. Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 421-427.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.115      或      https://www.jcscp.org/CN/Y2023/V43/I2/421

SteelCSiMnPSCrNiMoCuNBFe
317L0.0190.571.250.0240.00118.2917.323.150.050.050.004Bal.
904L0.0110.451.280.0190.00120.0824.224.321.410.06---Bal.
254SMo0.0100.430.400.0210.00119.9817.856.060.610.210.004Bal.
表1  实验用3种奥氏体不锈钢的成分[12]
图1  3种不锈钢在不同温度下的腐蚀动力学曲线
图2  3种不锈钢在不同温度下腐蚀50 h前后的XRD图
图3  3种不锈钢在650、700和750 ℃下混合盐中热腐蚀后的表面SEM图
图4  3种不锈钢在750 ℃下热腐蚀后的SEM图以及对应的EDS分析结果
图5  3种不锈钢在650,700和750 ℃下热腐蚀50 h的截面形貌
[1] Kawahara Y. High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment [J]. Corros. Sci., 2002, 44: 223
doi: 10.1016/S0010-938X(01)00058-0
[2] Tillman D A. Biomass cofiring: the technology, the experience, the combustion consequences [J]. Biomass Bioenergy, 2000, 19: 365
doi: 10.1016/S0961-9534(00)00049-0
[3] Qu Z P, Zhong R G, Wang L, et al. Research progress on high temperature corrosion mechanism of waste incineration power generation boiler [J]. IOP Conf. Ser. Earth Environ. Sci., 2020, 598: 012008
[4] Zhang S C, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mater. Charact., 2018, 137: 244
doi: 10.1016/j.matchar.2018.01.040
[5] Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
[6] Zhang S C, Jiang Z H, Li H B, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method [J]. J. Alloy. Compd., 2017, 695: 3083
doi: 10.1016/j.jallcom.2016.11.342
[7] Olsson J, Wasielewska W. Applications and experience with a Superaustenitic 7Mo stainless steel in hostile environments [J]. Mater. Corros., 1997, 48: 791
[8] Pettersson J, Folkeson N, Johansson L G, et al. The effects of KCl, K2SO4 and K2CO3 on the high temperature corrosion of a 304-type austenitic stainless steel [J]. Oxid. Met., 2011, 76: 93
doi: 10.1007/s11085-011-9240-z
[9] Li M H, Sun X F, Hu W Y, et al. Hot corrosion of a single crystal Ni-base superalloy by Na-salts at 900 ℃ [J]. Oxid. Met., 2006, 65: 137
doi: 10.1007/s11085-006-9004-3
[10] Lindberg D, Backman R, Chartrand P. Thermodynamic evaluation and optimization of the (NaCl+Na2SO4+Na2CO3+KCl+K2SO4+ K2CO3) system [J]. J. Chem. Thermodyn., 2007, 39: 1001
doi: 10.1016/j.jct.2006.12.018
[11] Samanta P, Hirani H. Magnetic bearing configurations: theoretical and experimental studies [J]. IEEE Trans. Magn., 2008, 44: 292
doi: 10.1109/TMAG.2007.912854
[12] Yi P, Hou L F, Du H Y, et al. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
[12] (伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288)
[13] Ding W J, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review [J]. Front. Chem. Sci. Eng., 2018, 12: 564
doi: 10.1007/s11705-018-1720-0
[14] Broström M. Aspects of alkali chloride chemistry on deposit formation and high temperature corrosion in biomass and waste fired boilers [R]. Energy Technology and Thermal Process Chemistry, 2010
[15] Judge A I. Preparation and thermochemical properties of alkali-metal diuranates (VI) and dineptunates (VI) [D]. Leicester: University of Leicester, 1985
[16] Lee S H, Themelis N J, Castaldi M J. High-temperature corrosion in waste-to-energy boilers [J]. J. Therm. Spray Technol., 2007, 16: 104
doi: 10.1007/s11666-006-9005-4
[17] Chen L Y, Lan H, Huang C B, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750 °C [J]. Eng. Failure Anal., 2017, 79: 245
doi: 10.1016/j.engfailanal.2017.05.009
[18] Weulersse-Mouturat K, Moulin G, Billard P, et al. High temperature corrosion of Superheater tubes in waste incinerators and coal-fired plants [A]. International Symposium on High Temperature Corrosion and Protection of Materials[C]. Les Embiez, 2004
[19] Zahs A, Spiegel M, Grabke H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700 ℃ [J]. Corros. Sci., 2000, 42: 1093
doi: 10.1016/S0010-938X(99)00142-0
[20] Ma J, Jiang S M, Gong J, et al. Behaviour and mechanisms of alkali-sulphate-induced hot corrosion on composite coatings at 900 ℃ [J]. Corros. Sci., 2012, 58: 251
doi: 10.1016/j.corsci.2012.01.034
[21] Doolabi M S, Ghasemi B, Sadrnezhaad S K, et al. Hot corrosion behavior and near-surface microstructure of a "low-temperature high-activity Cr-aluminide" coating on inconel 738LC exposed to Na2SO4, Na2SO4+V2O5 and Na2SO4+V2O5+NaCl at 900 ℃ [J]. Corros. Sci., 2017, 128: 42
doi: 10.1016/j.corsci.2017.09.004
[22] Goebel J A, Pettit F S. The influence of sulfides on the oxidation behavior of nickel-base alloys [J]. Metall. Trans., 1970, 1: 3421
[23] Ishitsuka T, Nose K. Stability of protective oxide films in waste incineration environment—solubility measurement of oxides in molten chlorides [J]. Corros. Sci., 2002, 44: 247
doi: 10.1016/S0010-938X(01)00059-2
[1] 王华, 王英杰, 刘恩泽. Ni含量对Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[2] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[3] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[4] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[5] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[6] 申聚宝, 崔宇, 刘莉, 刘叡, 孟凡帝, 王福会. DZ40M和K452高温合金在NaCl熔盐中的循环热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[7] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[8] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[9] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[10] 胡蕴媛, 钱伟, 花银群, 叶云霞, 蔡杰, 戴峰泽. 预腐蚀工艺对Gd2Zr2O7陶瓷抗CMAS腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[11] 吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[12] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[13] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[14] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[15] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.