Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 371-376     CSTR: 32134.14.1005.4537.2022.126      DOI: 10.11902/1005.4537.2022.126
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
P110S油套管在微含硫环境中的腐蚀行为研究
万红霞(), 刘重麟, 王子安, 刘茹, 陈长风
中国石油大学 (北京) 新能源与材料学院 北京 102249
Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment
WAN Hongxia(), LIU Chonglin, WANG Zian, LIU Ru, CHEN Changfeng
School of New Energy and Materials, China University of Petroleum, Beijing 102249, China
全文: PDF(3774 KB)   HTML
摘要: 

采用不同含量的Na2S来模拟不同的含硫环境,利用挂片浸泡实验研究P110S钢级油套管在含硫体系中的腐蚀行为;利用电化学测试研究了其在不同含硫浓度中电化学特征;利用扫描电镜、激光共聚焦、XRD以及拉曼光谱对样品表面的腐蚀产物和形貌进行了表征。结果表明,P110S钢级油套管钢在含硫体系中发生严重的腐蚀,腐蚀速率和腐蚀电流密度均随含硫浓度增大而增大,腐蚀类型由均匀腐蚀转变为点蚀,腐蚀产物疏松。

关键词 油套管含硫环境腐蚀行为    
Abstract

Casing is an important equipment in oil and gas production industry, at present, the oil casing steels used in the field are mainly K55, N80, L80-13Cr and P110 steel grade etc. With the development of oil and gas fields into deep formations, the casing services in H2S containing environment. Based on this condition, different concentrations of Na2S were used to simulate sulfur-containing environment, and the corrosion behavior of P110S steel was studied in sulfur-containing solutions by means of immersion test, electrochemical workstation scanning electron microscope, laser confocal microscope, XRD and Raman spectroscope. The results show that the P110S steel suffered from severe corrosion in sulfur-containing solutions. The corrosion rate and corrosion current density increased with sulfur concentration. The corrosion morphology changed from uniform corrosion to pitting corrosion, and the corrosion products were loose.

Key wordsoil casing    sulfur-containing environment    corrosion behavior
收稿日期: 2022-04-25      32134.14.1005.4537.2022.126
ZTFLH:  TG147  
基金资助:国家自然科学基金(52101112)
作者简介: 万红霞,女,1986年生,博士,讲师

引用本文:

万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
Hongxia WAN, Chonglin LIU, Zian WANG, Ru LIU, Changfeng CHEN. Corrosion Behavior of P110S Oil Casing Steel in Sulfur Containing Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 371-376.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.126      或      https://www.jcscp.org/CN/Y2023/V43/I2/371

图1  P110S钢在不同浓度Na2S溶液中浸泡7 d后的SEM像
图2  P110S钢在不同浓度Na2S溶液中浸泡7 d后的腐蚀形貌CLSM图以及截面SEM像
图3  P110S钢在不同浓度Na2S溶液中浸泡7 d后去除腐蚀产物的SEM像
图4  基体及溶液中腐蚀产物的XRD谱
图5  腐蚀产物的拉曼光谱图
图6  P110S钢的电化学测试结果
Solution / mol·L-1Rs / Ω·cm2Qf / F·cm2Rf / Ω·cm2Qct / F·cm2Rct / Ω·cm2Icorr / μA·cm-2Ecorr / V
0.011.2333.61×10-64.3434.45×10-3553.333.58-0.7365
0.051.6121.66×10-63.0043.09×10-3352.254.81-0.7353
0.11.2971.39×10-63.0073.56×10-3328.961.78-0.7419
表1  图6中电化学阻抗谱的拟合结果及极化曲线的拟合结果
[1] Zhang Z, Zheng Y S, Hou D, et al. The influence of hydrogen sulfide on internal pressure strength of carbon steel production casing in the gas well [J]. J. Pet. Sci. Eng., 2020, 191: 107113
doi: 10.1016/j.petrol.2020.107113
[2] Guo Q, Chen C F, Li S H, et al. Cracking behavior of cold-welding layer on A350 LF2 steel in H2S environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 167
[2] (郭强, 陈长风, 李世瀚 等. 冷焊修复层在H2S环境下的开裂行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 167)
[3] Ayagou M D D, Tran T T M, Tribollet B, et al. Electrochemical impedance spectroscopy of iron corrosion in H2S solutions [J]. Electrochim. Acta, 2018, 282: 775
doi: 10.1016/j.electacta.2018.06.052
[4] Du X L, Dai X J, Li Z C, et al. Corrosion analysis and anti-corrosion measures of oil casing of sulfur content gas wells: A case study of Daniudi gas field in the Ordos Basin [J]. Energy Rep., 2021, 7: 1280
[5] Kahyarian A, Nesic S. H2S corrosion of mild steel: A quantitative analysis of the mechanism of the cathodic reaction [J]. Electrochim. Acta, 2019, 297: 676
doi: 10.1016/j.electacta.2018.12.029
[6] Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion [J]. Corros. Sci., 2013, 67: 20
doi: 10.1016/j.corsci.2012.09.044
[7] Hesketh J, Dickinson E J F, Martin M L, et al. Influence of H2S on the pitting corrosion of 316L stainless steel in oilfield brine [J]. Corros. Sci., 2021, 182: 109265
doi: 10.1016/j.corsci.2021.109265
[8] He S, Xing X J, Liu S J, et al. Corrosion rules of commonly used oil well pipes in hydrogen sulfide environment [J]. Surf. Technol., 2018, 47(12): 14
[8] (何松, 邢希金, 刘书杰 等. 硫化氢环境下常用油井管材质腐蚀规律研究 [J]. 表面技术, 2018, 47(12): 14)
[9] Li W F, Zhou Y J, Xue Y. Corrosion behavior of 110S Tube steel in environments of high H2S and CO2 content [J]. J. Iron Steel Res. Int., 2012, 19: 59
[10] Yin Z F, Zhao W Z, Bai Z Q, et al. Corrosion behavior of SM 80SS tube steel in stimulant solution containing H2S and CO2 [J]. Electrochim. Acta, 2008, 53: 3690
doi: 10.1016/j.electacta.2007.12.039
[11] Elgaddafi R, Ahmed R, Shah S. Modeling and experimental studies on CO2-H2S corrosion of API carbon steels under high-pressure [J]. J. Pet. Sci. Eng., 2017, 156: 682
doi: 10.1016/j.petrol.2017.06.030
[12] Liu F, Huang J Y, Xia C Y, et al. Corrosion behavior of P110 S steel in corrosion solution with saturated H2S and CO2 at different temperatures [J]. Corros. Prot., 2016, 37: 481
[12] (刘飞, 黄金营, 夏成宇 等. P110钢在不同温度含饱和H2S/CO2腐蚀溶液中的腐蚀行为 [J]. 腐蚀与防护, 2016, 37: 481)
[13] Zeng D Z, Dong B J, Zeng F, et al. Analysis of corrosion failure and materials selection for CO2-H2S gas well [J]. J. Nat. Gas Sci. Eng., 2021, 86: 103734
doi: 10.1016/j.jngse.2020.103734
[14] Bourdoiseau J A, Jeannin M, Sabot R, et al. Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation [J]. Corros. Sci., 2008, 50: 3247
doi: 10.1016/j.corsci.2008.08.041
[15] Wan H X, Cai Y, Song D D, et al. Effect of Cr/Mo carbides on corrosion behaviour of Fe_Mn_C twinning induced plasticity steel [J]. Corros. Sci., 2020, 167: 108518
doi: 10.1016/j.corsci.2020.108518
[16] Yu H B, Liu J N, Yang M, et al. Effect of crystal structure and ion selectivity of corrosion products on corrosion behavior of P110S low alloy steel in H2S/CO2 environment [J]. Surf. Technol., 2020, 49(3): 28
[16] (于浩波, 刘家宁, 杨明 等. 腐蚀产物晶体结构及离子选择性对P110S低合金钢在H2S/CO2环境中腐蚀行为的影响 [J]. 表面技术, 2020, 49(3): 28)
[17] Zhang W, Young D, Brown B, et al. An in-situ Raman study on the oxidation of mackinawite as a corrosion product layer formed on mild steel in marginally sour environments [J]. Corros. Sci., 2021, 188: 109516
doi: 10.1016/j.corsci.2021.109516
[18] Liu M, Wang J Q, Ke W, et al. Corrosion behavior of X52 anti-H2S pipeline steel exposed to high H2S concentration solutions at 90°C [J]. J. Mater. Sci. Technol., 2014, 30: 504
doi: 10.1016/j.jmst.2013.10.018
[19] Bai P P, Zhao H, Zheng S Q, et al. Initiation and developmental stages of steel corrosion in wet H2S environments [J]. Corros. Sci., 2015, 93: 109
doi: 10.1016/j.corsci.2015.01.024
[20] Dong Y Y, Huang F, Cheng P, et al. Evolution of corrosion product scales on an acid proof pipeline steel X65 MS in H2S containing environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 386
[20] (董洋洋, 黄峰, 程攀 等. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变 [J]. 中国腐蚀与防护学报, 2015, 35: 386)
[1] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[2] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[3] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[4] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[5] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[6] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[7] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[8] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[9] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[10] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[11] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[12] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[13] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[14] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[15] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.