Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 384-390     CSTR: 32134.14.1005.4537.2022.135      DOI: 10.11902/1005.4537.2022.135
  研究报告 本期目录 | 过刊浏览 |
含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性
张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德()
太原理工大学材料科学与工程学院 太原 030024
Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel
ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide()
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(3642 KB)   HTML
摘要: 

采用扫描电镜 (SEM) 及电化学测试,研究了S31254-Ce超级奥氏体不锈钢固溶、时效处理后第二相的溶解、析出行为及耐蚀性能。结果表明:1250 ℃保温120 min后,S31254-Ce试样中析出相可完全回溶。800~900 ℃时效处理后,S31254-Ce不锈钢均有析出相析出,第二相优先析出于晶界。随着温度升高,840 ℃以上时效处理后,析出相也逐渐在晶内析出,且数量逐渐增多。860 ℃时效处理过程中,随时效时间延长,晶内细小点状析出相尺寸逐渐增大,晶内析出相渐渐呈现网状结构。S31254-Ce不锈钢固溶处理后试样的耐蚀性最好。随时效温度提高,析出相越多,S31254-Ce不锈钢的耐蚀性能越弱。时效温度为840~900 ℃时,对应材料的耐蚀性能的下降幅度增加。

关键词 S31254Ce时效处理析出相耐蚀性能    
Abstract

The dissolution and precipitation behavior of the second phase and corrosion resistance of S31254-Ce super austenitic stainless steel after solid solution and aging treatment were studied by scanning electron microscope (SEM) and electrochemical test. The results show that the precipitates in S31254-Ce stainless steel can be completely redissolved after heated at 1250 ℃ for 120 min. After aged at 800-900 ℃, particulates of second phase were precipitated in S31254-Ce stainless steel preferentially along grain boundaries. With the increase of aging temperature up to above 840 ℃, the particulates gradually precipitated within the grain, and the number of precipitates gradually increases. During the aging treatment at 860 ℃, with the extension of aging time, the size of the fine dot-like precipitates within the grain gradually increased, and the intragranular precipitates gradually formed a network-like morphology. S31254-Ce has the best corrosion resistance after solid solution treatment. With the increased of aging temperature, the number of precipitates of S31254-Ce stainless steel increased and therewith the corrosion resistance of the steel decreased. After aging at 840-900 ℃, the degree of the corrosion resistance deterioration of S31254-Ce stainless steel increased.

Key wordsS31254 stainless steel    Ce    aging treatment    precipitate    corrosion resistance
收稿日期: 2022-05-05      32134.14.1005.4537.2022.135
ZTFLH:  TG174  
基金资助:国家自然科学基金(51871159)
作者简介: 张小丽,女,1996年生,硕士生

引用本文:

张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
Xiaoli ZHANG, Maonian XUN, Xiaohong LIANG, Caili ZHANG, Peide HAN. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 384-390.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.135      或      https://www.jcscp.org/CN/Y2023/V43/I2/384

图1  S31254-Ce不锈钢轧制态显微组织
图2  S31254-Ce经1250 ℃固溶处理不同时间后显微组织
图3  S31254-Ce超级奥氏体不锈钢不同温度时效保温90 min后显微组织
图4  S31254-Ce不锈钢860 ℃时效处理不同时间后显微组织
图5  S31254-Ce不锈钢860 ℃时效处理120 min后显微组织及EDS分析
图6  S31254-Ce不锈钢经固溶及不同时效温度处理90 min后的动电位极化曲线及Icorr值随时效温度变化
Temperature / ℃Icorr / 107 A·cm-2Ecorr / VIp / 105 A·cm-2Epit / V
Solution treatment2.11±0.055-0.1486.221.137
8002.14±0.036-0.1496.311.104
8203.25±0.083-0.1828.441.097
8405.06±0.074-0.24914.371.059
8609.39±0.078-0.37327.541.038
88012.42±0.063-0.46335.551.021
90013.18±0.083-0.53452.141.011
表1  S31254-Ce不锈钢经固溶及不同时效温度处理90 min后动电位极化相关参数
图7  S31254-Ce不锈钢经固溶及不同时效温度处理90 min后EIS曲线及等效电路
Temperature / ℃Rs / Ω·cm2Rct / Ω·cm2Qct / 10-5 Ω-1·cm-1s-1nctRf / kΩ·cm2Qf / 10-5 Ω-1·cm-1s-1nf
Solution treatment10.412138.777.180.89344.615.040.88
80010.572057.567.240.89332.855.180.90
82010.531935.787.700.89319.595.640.91
84010.381781.438.380.90249.817.270.89
86010.321149.749.049.91131.268.350.90
88010.61796.239.770.83104.729.260.88
90010.86520.6510.060.8585.779.920.87
表2  S31254-Ce不锈钢经固溶及不同时效温度处理90 min后等效电路拟合结果
[1] Wang J, Cui Y S, Bai J G, et al. Effect of B addition on the microstructure and corrosion resistance of S31254 super austenitic stainless steels after solid solution treatment [J]. Mater. Lett., 2019, 252: 60
doi: 10.1016/j.matlet.2019.05.107
[2] Zhang S C, Li H B, Jiang Z H, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654 [J]. Mater. Charact., 2019, 152: 141
doi: 10.1016/j.matchar.2019.04.010
[3] Li J C, Liang W, Wu M, et al. Microstructure evolution in the segregation area of S31254 stainless steel plate [J]. Mater. Today Proc., 2015, 2: S319
[4] Zhang S C, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mater. Charact., 2018, 137: 244
doi: 10.1016/j.matchar.2018.01.040
[5] Bai J G, Cui Y S, Wang J, et al. Effect of boron addition on the precipitation behavior of S31254 [J]. Metals, 2018, 8: 497
doi: 10.3390/met8070497
[6] Li J G, Zhang C L, Xu L, et al. Effects of B on the segregation of Mo at the Fe-Cr-NiΣ5 (210) grain boundary [J]. Physica, 2019, 568B: 25
[7] Zhang S C, Li H B, Jiang Z H, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2020, 42: 143
doi: 10.1016/j.jmst.2019.10.011
[8] Li B B, Qu H P, Lang Y P, et al. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels [J]. Corros. Sci., 2020, 173: 108791
doi: 10.1016/j.corsci.2020.108791
[9] Askarian M, Peikari M, Javadpour S, et al. The effect of cerium solutions on 316L stainless steel [J]. WIT Trans. Eng. Sci., 2009, 64: 249
[10] Zhang S C, Yu J T, Li H B, et al. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102: 105
doi: 10.1016/j.jmst.2021.06.033
[11] Wang Q, Wang L J, Zhang W, et al. Effect of cerium on the austenitic nucleation and growth of high-Mo austenitic stainless steel [J]. Metall. Mater. Trans., 2020, 51B: 1773
[12] Kim S M, Kim J S, Kim K T, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mater. Sci. Eng., 2013, 573A: 27
[13] Wang T H, Wang J, Bai J G, et al. Effect of boron on dissolution and repairing behavior of passive film on S31254 super-austenitic stainless steel immersed in H2SO4 solution [J]. J. Iron Steel Res. Int., 2022, 29: 1012
doi: 10.1007/s42243-021-00693-0
[14] Chen X D, Li Y S, Zhu Y T, et al. Enhanced irradiation and corrosion resistance of 316LN stainless steel with high densities of dislocations and twins [J]. J. Nucl. Mater., 2019, 517: 234
doi: 10.1016/j.jnucmat.2019.02.016
[15] Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
[15] (张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143)
[16] Cui Y S, Qurashi M S, Wang J, et al. Effect of solution treatment on the microstructure and performance of S31254 super austenitic stainless steel [J]. Steel Res. Int., 2019, 90: 1900041
doi: 10.1002/srin.201900041
[17] Gai X P, Lei L, Cui Z Y. Pitting corrosion behavior of 304 stainless steel in simulated concrete pore solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 646
[17] (盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 646)
[18] Mohammadi F, Nickchi T, Attar M M, et al. EIS study of potentiostatically formed passive film on 304 stainless steel [J]. Electrochim. Acta, 2011, 56: 8727
doi: 10.1016/j.electacta.2011.07.072
[19] Boissy C, Ter-Ovanessian B, Mary N, et al. Correlation between predictive and descriptive models to characterize the passive film-Study of pure chromium by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2015, 174: 430
doi: 10.1016/j.electacta.2015.05.179
[20] Zhao Y, Xiong H, Li X P, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
doi: 10.1016/j.corcom.2021.09.002
[21] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
doi: 10.1016/j.corsci.2017.01.016
[22] Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
[22] (达波, 余红发, 麻海燕 等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260)
[23] Chen A Y, Hu W F, Wang D, et al. Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure [J]. Scr. Mater., 2017, 130: 264
doi: 10.1016/j.scriptamat.2016.11.032
[1] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[2] 倪雅, 施方长, 戚继球. Ce添加对Zn-0.6Cu-0.3Ti合金组织与耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[3] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[4] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[5] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[6] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[7] 包晔峰, 武竹雨, 陈哲, 郭林坡, 王子睿, 曹冲, 宋亓宁. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[8] 李凤铭, 侯嘉鹏, 谢光宗, 吴细毛, 王强, 张哲峰. 大变形量高强高导Al-Mg-Si合金线的腐蚀机制研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1002-1008.
[9] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[10] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[11] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[12] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[14] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[15] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.