Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 399-407     CSTR: 32134.14.1005.4537.2022.138      DOI: 10.11902/1005.4537.2022.138
  研究报告 本期目录 | 过刊浏览 |
热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化
张而耕, 杨磊, 杨虎, 梁丹丹(), 陈强(), 周琼, 黄彪
上海应用技术大学 上海物理气相沉积 (PVD) 超硬涂层及装备工程技术研究中心 上海 201418
Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings
ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan(), CHEN Qiang(), ZHOU Qiong, HUANG Biao
Shanghai Engineering Technology Research Center of Physical Vapor Deposition (PVD) Superhard Coatings and Equipment, Shanghai University of Technology, Shanghai 201418, China
全文: PDF(7139 KB)   HTML
摘要: 

由于高硬度、高强度、高热稳定性、良好的耐磨性、耐腐蚀性、软磁性、成本低等诸多优点,Fe基非晶合金在众多领域有着十分广泛的应用前景。但其有限的玻璃形成能力、本征脆性等缺点极大地限制其作为工程材料的应用推广。利用热喷涂技术制备的Fe基非晶涂层不仅能够保持其原本的优异特性,还能弥补其缺点,突破工程应用的局限性。本文对Fe基非晶涂层的主要热喷涂制备方法进行了介绍,并对非晶涂层耐腐蚀性的影响因素:成分、氧化、孔隙、晶化和裂纹等一一归纳,并提出了Fe基非晶涂层耐腐蚀性能的优化措施,最后对Fe基非晶涂层耐腐蚀性的下一步研究进行展望。

关键词 非晶涂层热喷涂微观结构耐腐蚀性    
Abstract

Because of the advantages of high hardness and strength, superior thermal stability, good wear resistance, excellent corrosion resistance, outstanding soft magnetism, and low cost, Fe-based amorphous alloys exhibit a broad application prospect in many fields. However, the limited glass-forming ability and intrinsic plasticity greatly limit their application as engineering materials. Thereinto, Fe-based amorphous coatings prepared by thermal spraying technology can not only maintain their inherent characteristics but also avoid the aforementioned shortcomings, thus breaking through the limitation of engineering application. In this paper, the main preparation methods of Fe-based amorphous coatings by thermal spraying were comprehensively introduced, and the influencing factors of corrosion resistance, including the chemical composition, oxidation, pore, crystallization, and crack, were reviewed. Then, the methods to optimize the corrosion resistance of Fe-based amorphous coatings were summarized. Finally, the prospective research regarding the corrosion resistance of Fe-based amorphous coatings was proposed.

Key wordsamorphous coating    thermal spraying    microstructure    corrosion resistance
收稿日期: 2022-05-06      32134.14.1005.4537.2022.138
ZTFLH:  TG174  
基金资助:国家自然科学基金(51901138);国家自然科学基金(51971148);上海市优秀技术带头人计划(22XD1434500);引进人才科研经费(YJ2022-31);和上海市自然科学基金(20ZR1455700)
作者简介: 张而耕,男,1973年生,博士,教授

引用本文:

张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
Ergeng ZHANG, Lei YANG, Hu YANG, Dandan LIANG, Qiang CHEN, Qiong ZHOU, Biao HUANG. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 399-407.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.138      或      https://www.jcscp.org/CN/Y2023/V43/I2/399

ProcessPlasma sprayingElectric arc sprayingHigh velocity oxy-fuel
Heat sourcePlasma arcElectric arcCombustion flame
Temperature of the heat source / ℃>100004000-60002600-3000
Particle velocity / m·s-1≤450100-300≤1000
Spraying efficiency / kg·h-12-1010-281-9
Material shapePowderyFiliform、RibbonPowdery
Oxidation degree of coatingsMiddleMiddle-HighLow
Bonding strength / MPa14-6914-5040-83
表1  3种常见的热喷涂方法的工艺特征[17,18]
图1  电弧喷涂制备Fe基非晶涂层的SEM截面图
图2  涂层截面背散射电子SEM像[23]
图3  Fe基金属涂层的腐蚀过程示意图[35]
图4  初始态和弛豫态非晶涂层腐蚀后的SEM形貌及O元素分布图[36]
图5  电化学实验后Fe基非晶涂层的腐蚀表面形貌和相应的EDS图[45]
图6  铁基非晶涂层的润湿角[36]
图7  Fe基非晶涂层的溶解处理示意图[54]
[1] Gao H, Wei X S, Liang D D, et al. Friction and wear properties of HVAF sprayed Fe-based amorphous alloy coatings [J]. Surf. Technol., 2018, 47(2): 55
[1] (高涵, 魏先顺, 梁丹丹 等. 超音速火焰喷涂Fe基非晶合金涂层材料的摩擦磨损性能研究 [J]. 表面技术, 2018, 47(2): 55)
[2] Axinte E M, Chirileanu M P I. Recent progress in the industrialization of metallic glasses [J]. Recent Pat. Mater. Sci., 2012, 5: 213
[3] Zhu L, Jiang S S, Yang Z Z, et al. Magnetic properties of a Fe-based amorphous alloy with stress gradient [J]. J. Magn. Magn. Mater., 2021, 519: 167513
doi: 10.1016/j.jmmm.2020.167513
[4] Shen J, Chen Q, Sun J, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
doi: 10.1063/1.1897426
[5] Suryanarayana C, Inoue A. Iron-based bulk metallic glasses [J]. Int. Mater. Rev., 2013, 58: 131
doi: 10.1179/1743280412Y.0000000007
[6] Zhang J, Feng Y P, Li Y. Bulk metallic glass formation, composite, and magnetic propertiesof Fe-B-Nd based alloys [J]. J. Mater. Res., 2009, 24: 357
doi: 10.1557/JMR.2009.0074
[7] Si C R, Duan B B, Zhang Q, et al. Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe-Mo-Cr-Co coating with extremely high amorphous rate [J]. J. Mater. Res. Technol., 2020, 9: 3292
doi: 10.1016/j.jmrt.2020.01.024
[8] Hess P A, Poon S J, Shiflet G J, et al. Indentation fracture toughness of amorphous steel [J]. J. Mater. Res., 2005, 20: 783
doi: 10.1557/JMR.2005.0104
[9] Chen Q J, Fan H B, Ye L, et al. Enhanced glass forming ability of Fe-Co-Zr-Mo-W-B alloys with Ni addition [J]. Mater. Sci. Eng., 2005, 402A: 188
[10] Zhang Z F, Wu F F, Gao W, et al. Wavy cleavage fracture of bulk metallic glass [J]. Appl. Phys. Lett., 2006, 89: 251917
doi: 10.1063/1.2422895
[11] Chu J P, Huang J C, Jang J S C, et al. Thin film metallic glasses: preparations, properties, and applications [J]. JOM, 2010, 62: 19
doi: 10.1007/s11837-010-0053-3
[12] Li Z, Zhang C, Liu L. Wear behavior and corrosion properties of Fe-based thin film metallic glasses [J]. J. Alloy. Compd., 2015, 650: 127
doi: 10.1016/j.jallcom.2015.07.256
[13] Jang J S C, Tsai P H, Shiao A Z, et al. Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film [J]. Intermetallics, 2015, 65: 56
doi: 10.1016/j.intermet.2015.06.012
[14] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
doi: 10.1038/s41529-017-0005-2
[15] Wang H J. Thermal Spraying Engineer's Guide [M]. Beijing: National Defense Industry Press, 2010
[15] (王海军. 热喷涂工程师指南 [M]. 北京: 国防工业出版社, 2010)
[16] Siegmann S, Abert C. 100 years of thermal spray: about the inventor Max Ulrich Schoop [J]. Surf. Coat. Technol., 2013, 220: 3
doi: 10.1016/j.surfcoat.2012.10.034
[17] Wang H J. Thermal Spraying Materials and Application [M]. Beijing: National Defense Industry Press, 2008
[17] (王海军. 热喷涂材料及应用 [M]. 北京: 国防工业出版社, 2008)
[18] Tan L M. Study on structure and properties of Fe-based amorphous wear resistant and anticorrosive coatings [D]. Shanghai: Shanghai University of Engineering Science, 2018
[18] (谭礼明. 铁基非晶耐磨抗蚀涂层结构和性能研究 [D]. 上海: 上海工程技术大学, 2018)
[19] Yugeswaran S, Kobayashi A. Metallic glass coatings fabricated by gas tunnel type plasma spraying [J]. Vacuum, 2014, 110: 177
doi: 10.1016/j.vacuum.2014.04.016
[20] Zhou Z, Wang L, Wang F C, et al. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying [J]. Surf. Coat. Technol., 2009, 204: 563
doi: 10.1016/j.surfcoat.2009.08.025
[21] Tian X L, Wang Z J, Hu Z X. Research progress on supersonic spray gun design and numerical simulation [J]. Trans. China Weld. Inst., 2002, 23(1): 93
[21] (田欣利, 王志健, 胡仲翔. 超音速火焰喷枪设计理论与数值模拟的研究进展 [J]. 焊接学报, 2002, 23(1): 93)
[22] Han Z, Zhao H. Development of thermal spray─new type of high energy and high velocity spray [J]. J. Mater. Eng., 1996, 24(12): 3
[22] (韩忠, 赵晖. 热喷涂发展趋势─新型高能高速喷涂方法 [J]. 材料工程, 1996, 24(12): 3)
[23] Liang D D, Ma J, Cai Y F, et al. Characterization and elevated-temperature tribological performance of AC-HVAF-sprayed Fe-based amorphous coating [J]. Surf. Coat. Technol., 2020, 387: 125535
doi: 10.1016/j.surfcoat.2020.125535
[24] Xu D D, Zhou B L, Wang Q Q, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys [J]. Corros. Sci., 2018, 138: 20
doi: 10.1016/j.corsci.2018.04.006
[25] Wang Z M, Ma Y T, Zhang J, et al. Influence of yttrium as a minority alloying element on the corrosion behavior in Fe-based bulk metallic glasses [J]. Electrochim. Acta, 2008, 54: 261
doi: 10.1016/j.electacta.2008.08.017
[26] Wang Y, Jiang S L, Zheng Y G, et al. Effect of molybdenum, manganese and tungsten contents on the corrosion behavior and hardness of iron-based metallic glasses [J]. Mater. Corros., 2014, 65: 733
[27] Habazaki H, Kawashima A, Asami K, et al. Cheminform abstract: the effect of tungsten on the corrosion behavior of amorphous Fe-Cr-W-P-C alloys in 1 M HCl [J]. ChemInform, 1991, 134: 1033
[28] Liang D D, Wei X S, Chang C T, et al. Effects of W addition on the electrochemical behaviour and passive film properties of Fe-based amorphous alloys in acetic acid solution [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 1098
doi: 10.1007/s40195-018-0791-8
[29] Burkov A A, Chigrin P G. Effect of tungsten, molybdenum, nickel and cobalt on the corrosion and wear performance of Fe-based metallic glass coatings [J]. Surf. Coat. Technol., 2018, 351: 68
doi: 10.1016/j.surfcoat.2018.07.078
[30] Zhang B S, Cheng J B, Liang X B. Effects of Cr and Mo additions on formation and mechanical properties of Arc-sprayed FeBSiNb-based glassy coatings [J]. J. Non-Cryst. Solids, 2018, 499: 245
doi: 10.1016/j.jnoncrysol.2018.07.035
[31] Huang B, Zhang C, Zhang G, et al. Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: a review [J]. Surf. Coat. Technol., 2019, 377: 124896
doi: 10.1016/j.surfcoat.2019.124896
[32] Guo R Q, Zhang C, Chen Q, et al. Study of structure and corrosion resistance of Fe-based amorphous coatings prepared by HVAF and HVOF [J]. Corros. Sci., 2011, 53: 2351
doi: 10.1016/j.corsci.2010.12.022
[33] Zhang C, Chan K C, Wu Y, et al. Pitting initiation in Fe-based amorphous coatings [J]. Acta Mater., 2012, 60: 4152
doi: 10.1016/j.actamat.2012.04.005
[34] Wu J, Zhang S D, Sun W H, et al. Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones [J]. Corros. Sci., 2018, 136: 161
doi: 10.1016/j.corsci.2018.03.005
[35] Wu J, Zhang S D, Sun W H, et al. Wang. Influence of oxidation related structural defects on localized corrosion in HVAF-sprayed Fe-based metallic coatings [J]. Surf. Coat. Technol., 2018, 335: 205
doi: 10.1016/j.surfcoat.2017.12.038
[36] Liang D D, Liu X D, Zhou Y H, et al. Effects of annealing below glass transition temperature on the wettability and corrosion performance of Fe-based amorphous coatings [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 243
doi: 10.1007/s40195-021-01228-y
[37] Wang D L, Ding H P, Ma Y F, et al. Research progress on corrosion resistance of metallic glasses [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 277
[37] (王东亮, 丁华平, 马云飞 等. 非晶合金耐蚀性研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 277)
[38] Liu G, An Y L, Guo Z H, et al. Structure and corrosion behavior of iron-based metallic glass coatings prepared by LPPS [J]. Appl. Surf. Sci., 2012, 258: 5380
doi: 10.1016/j.apsusc.2012.02.015
[39] Kim Y J, Jang J W, Lee D W, et al. Porosity effects of a Fe-based amorphous/nanocrystals coating prepared by a commercial high velocity oxy-fuel process on cavitation erosion behaviors [J]. Met. Mater. Int., 2015, 21: 673
doi: 10.1007/s12540-015-4580-x
[40] Zhang S D, Zhang W L, Wang S G, et al. Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
doi: 10.1016/j.corsci.2015.01.022
[41] Zhang S D, Wu J, Qi W B, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
doi: 10.1016/j.corsci.2016.04.021
[42] Nayak S K, Kumar A, Sarkar K, et al. Mechanistic insight into the role of amorphicity and porosity on determining the corrosion mitigation behavior of Fe-based amorphous/nanocrystalline coating [J]. J. Alloy. Compd., 2020, 849: 156624
doi: 10.1016/j.jallcom.2020.156624
[43] Lin J R, Wang Z H, Lin P H, et al. Effect of crystallisation on electrochemical properties of arc sprayed FeNiCrBSiNbW coatings [J]. Surf. Eng., 2014, 30: 683
doi: 10.1179/1743294414Y.0000000299
[44] Jiao J, Luo Q, Wang Y, et al. Influence of crystalline phases in powders on corrosion behavior of Fe-based amorphous coating [J]. Hot Work. Technol., 2018, 47: 88
[44] (焦津, 罗强, 王勇 等. 粉末中的晶化相对铁基非晶涂层腐蚀行为的影响 [J]. 热加工工艺, 2018, 47: 88)
[45] Liang D D, Zhou Y H, Liu X D, et al. Wettability and corrosion performance of arc-sprayed Fe-based amorphous coatings [J]. Surf. Coat. Technol., 2022, 433: 128129
doi: 10.1016/j.surfcoat.2022.128129
[46] Cheng J B, Liang X B, Xu B S. Effects of crystallization on the corrosion resistance of arc-sprayed FeBSiNb coatings [J]. J. Therm. Spray Technol., 2014, 23: 373
doi: 10.1007/s11666-013-9990-z
[47] Kang Y H, Chen Y M, Wen Y X, et al. Effects of structural relaxation and crystallization on the corrosion resistance of an Fe-based amorphous coating [J]. J. Non-Cryst. Solids, 2020, 550: 120378
doi: 10.1016/j.jnoncrysol.2020.120378
[48] Jiao J, Luo Q, Wei X S, et al. Influence of sealing treatment on the corrosion resistance of Fe-based amorphous coatings in HCl solution [J]. J. Alloy. Compd., 2017, 714: 356
doi: 10.1016/j.jallcom.2017.04.179
[49] Lu Y Z, Huang G K, Wang Y Z, et al. Crack-free Fe-based amorphous coating synthesized by laser cladding [J]. Mater. Lett., 2018, 210: 46
doi: 10.1016/j.matlet.2017.08.125
[50] Wang H B, Li C Y, Wang S P, et al. Effect of heat-treatment on wear resistance and corrosion resistance of Fe-based amorphous coatings [J]. Chin. J. Nonferrous Met., 2022, 32: 1044
[50] (王海博, 李春燕, 王顺平 等. 热处理对Fe基非晶涂层耐磨及耐腐蚀性能的影响 [J]. 中国有色金属学报, 2022, 32: 1044)
[51] Lei S, Hu R, Pan Y, et al. Effect of annealing processes on corrosion performances of Fe91.63B1.27Si7.09 amorphous strips [J]. Hot Work. Technol., 2016, 45: 244
[51] (雷声, 胡蓉, 潘勇 等. 退火工艺对Fe91.63B1.27Si7.09非晶带材腐蚀性能的影响 [J]. 热加工工艺, 2016, 45: 244)
[52] Zhang C. Fabrication, structure and properties of amorphous metallic coatings [D]. Wuhan: Huazhong University of Science and Technology, 2012
[52] (张诚. 非晶涂层的制备、结构与性能研究 [D]. 武汉: 华中科技大学, 2012)
[53] Li Y C, Zhang W W, Wang Y, et al. Effect of spray powder particle size on the bionic hydrophobic structures and corrosion performance of Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2022, 437: 128377
doi: 10.1016/j.surfcoat.2022.128377
[54] Wu J. Role of coating defects in corrosion behavior of Fe-based amorphous metallic coatings [D]. Hefei: University of Science and Technology of China, 2020
[54] (吴静. 涂层缺陷对铁基非晶合金涂层腐蚀行为影响研究 [D]. 合肥: 中国科学技术大学, 2020)
[55] Wang Y, Wu C M, Li W, et al. Effect of bionic hydrophobic structures on the corrosion performance of Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2021, 416: 127176
doi: 10.1016/j.surfcoat.2021.127176
[56] Wang Y, Jiang S L, Zheng Y G, et al. Effect of porosity sealing treatments on the corrosion resistance of high-velocity oxy-fuel (HVOF)-sprayed Fe-based amorphous metallic coatings [J]. Surf. Coat. Technol., 2011, 206: 1307
doi: 10.1016/j.surfcoat.2011.08.045
[57] Xu P. Effect of the second phase and sealing treatment on the corrosion behaviors of Fe-based amorphous coatings [D]. Wuhan: Huazhong University of Science and Technology, 2016
[57] (徐鹏. 第二相与封孔处理对铁基非晶涂层腐蚀行为影响的研究 [D]. 武汉: 华中科技大学, 2016)
[58] Zhu W Y. Effect of sealing treatment on corrosion resistance of thermal sprayed metal base coatings [D]. Yangzhou: Yangzhou University, 2021
[58] (朱无言. 封孔处理对热喷涂金属涂层耐腐蚀性能影响研究 [D]. 扬州: 扬州大学, 2021)
[1] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[2] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[3] 胡倩, 高佳仪, 郭瑞生, 史俊勤, 王显宗. 微纳结构对阳极氧化铝超滑表面长期耐蚀性的影响机制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[4] 曲作鹏, 张贝贝, 谢广校, 杨宇曦, 王永田, 田欣利, 王海军. 垃圾焚烧炉受热面防护技术的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
[5] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[6] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[7] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[8] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[9] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[10] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[11] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[12] 王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[13] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[14] 熊义, 刘光明, 占阜元, 毛晓飞, 罗钦, 洪嘉, 倪进飞, 刘永强. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[15] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.