Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 231-241     CSTR: 32134.14.1005.4537.2022.176      DOI: 10.11902/1005.4537.2022.176
  中国腐蚀与防护学报编委、青年编委专栏 本期目录 | 过刊浏览 |
超疏水聚四氟乙烯材料制备工艺的研究进展
连衍成1, 梁富源1, 贺建超2, 李瑨2, 武俊伟1,2(), 冷雪松2
1.哈尔滨工业大学 (深圳) 材料科学与工程学院 深圳 518055
2.哈尔滨工业大学 (深圳) 特殊环境与物质科学研究院 深圳 518055
Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene
LIAN Yancheng1, LIANG Fuyuan1, HE Jianchao2, LI Jin2, WU Junwei1,2(), LENG Xuesong2
1.School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
2.Institute of Special Environmental and Material Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
全文: PDF(26523 KB)   HTML
摘要: 

对用PTFE材料开发超疏水材料和薄膜,以及改性的思路进行了全面综述。首先,总结了超疏水PTFE块体与薄膜材料的加工工艺,并对各个方法的开发结果和特点进行了说明。此外,为进一步提升超疏水薄膜的特性,众多研究者还通过掺杂对薄膜进行改性,分别实现了增强其耐用性和与其他特性的融合。最后,对PTFE超疏水材料的发展和在防腐蚀领域的应用进行了展望。

关键词 聚四氟乙烯超疏水薄膜掺杂防腐蚀    
Abstract

With low surface energy and high chemical stability, polytetrafluoroethylene (PTFE) has received a lot of attention in the fields of superhydrophobicity and anti-corrosion applications from both research and industry. For PTFE bulk materials, superhydrophobicity can be achieved by increasing the surface roughness alone, while thin films of superhydrophobicity have the advantages of applying on different substrates, which can also benefit from PTFE. In this paper, we present a comprehensive review of the ideas of developing superhydrophobic materials and thin films from PTFE materials. Firstly, the processing processes of superhydrophobic PTFE bulk and thin film materials are summarized, and the development results and characteristics of each method are explained. Secondly, to further enhance the properties of superhydrophobic films, numerous researchers have modified the films by doping to achieve enhanced durability and integration with other properties, respectively. Finally, an outlook on the development of PTFE superhydrophobic materials and their applications in corrosion prevention is also presented.

Key wordspolytetrafluoroethylene    superhydrophobicity    thin film    doping    corrosion protection
收稿日期: 2022-05-30      32134.14.1005.4537.2022.176
ZTFLH:  TG172  
作者简介: 连衍成,男,1999年生

引用本文:

连衍成, 梁富源, 贺建超, 李瑨, 武俊伟, 冷雪松. 超疏水聚四氟乙烯材料制备工艺的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 231-241.
Yancheng LIAN, Fuyuan LIANG, Jianchao HE, Jin LI, Junwei WU, Xuesong LENG. Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 231-241.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.176      或      https://www.jcscp.org/CN/Y2023/V43/I2/231

图1  Young's,Wenzel及Cassie-Baxter模型示意
图2  不同加工参数下样品表面形貌及疏水性能形貌[30]
图3  PTFE表面经过不同能量5次加工后的SEM像[31]
图4  原始和正常入射角离子束处理的PTFE表面的FESEM图像[33]
图5  PTFE表面的2D AFM图像[40]和静态水接触角随射频功率和等离子体处理时间的变化[35]
图6  不同普鲁兰多糖/PTFE质量比下的前体膜和相应烧结膜的形态与380 ℃时烧结的中空纤维膜的横截面[41]
图7  射频磁控溅射PTFE薄膜[54]和Cat-CVD PTFE薄膜[43]的SEM像
图8  含不同SiO2纳米粒子的PTFE-SiO2薄膜的FE-SEM图像[45]和SiO2纳米粒子对PTFE-SiO2薄膜表面水接触角的影响与温度对PTFE-SiO2薄膜表面水接触角的影响[45]
图9  煅烧前后的PTFE/PVA/POSS纳米纤维膜的FESEM图像及煅烧后PTFE/POSS纳米纤维膜的三维共聚焦显微镜图像[47]
图10  PET衬底上镀Ag-PPFC纳米复合膜的横截面FE-TEM图像及涂层织物的超疏水性正面和背面,插图为水接触角的测量值[50]
[1] Lin S Y, Liang W X, Yang C Q, et al. Progress in superhydrophobic self-cleaning coatings [J]. Fujian Constr. Sci. Technol., 2015, (4): 53
[1] (林淑云, 梁伟欣, 杨聪强 等. 超疏水自清洁涂层的研究进展 [J]. 福建建设科技, 2015, (4): 53)
[2] Zhang X, Guan J H, Yin H W, et al. Research advances in application of superhydrophobic surfaces to anticorrosion of metals [J]. Electroplat. Finish., 2021, 40: 132
[2] (张欣, 关金鹤, 尹华伟 等. 超疏水表面在金属抗腐蚀应用中的研究进展 [J]. 电镀与涂饰, 2021, 40: 132)
[3] Li J, Jiao W C, Wang Y C, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology [J]. Acta Mater. Compos. Sin., 2022, 39: 23
[3] (李君, 矫维成, 王寅春 等. 超疏水材料在防/除冰技术中的应用研究进展 [J]. 复合材料学报, 2022, 39: 23)
[4] Lin Y P, Wang Q C, Lü S W, et al. Research progress on superhydrophobic surface materials in biology and medicine molecule detection [J]. Surf. Technol., 2022, 51: 113
[4] (林彦萍, 王庆成, 吕恕位 等. 超疏水表面材料在生物医学检测领域研究进展 [J]. 表面技术, 2022, 51: 113)
[5] Dong W R, Yu Y, Yang Y Y, et al. Research development on the application of superhydrophobic film in oil-water separation [J]. New Chem. Mater., 2019, (Suppl.): 16
[5] (董文瑞, 喻媛, 杨悦悦 等. 超疏水膜在油水分离中应用的研究进展 [J]. 化工新型材料, 2019, (增刊): 16)
[6] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202: 1
doi: 10.1007/s004250050096
[7] Ren Z L. Transparent superhydrophobic polytetrafluoroethylene films prepared by radio frequency magnetron sputtering [D]. Chongqing: Chongqing University, 2017: 1
[7] (任芝龙. 射频磁控溅射制备透明超疏水聚四氟乙烯薄膜 [D]. 重庆: 重庆大学, 2017: 1)
[8] Hare E F, Shafrin E G, Zisman W A. Properties of films of adsorbed fluorinated acids [J]. J. Phys. Chem., 1954, 58: 236
doi: 10.1021/j150513a011
[9] Liu X Z, Li C, Wang J F, et al. Study of Ni-P and Ni-P-PTFE coatings on carbon steel via electroless deposition [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 379
[9] (刘学忠, 李超, 王建飞 等. 碳钢表面化学镀Ni-P及Ni-P-PTFE纳米非晶镀层研究 [J]. 中国腐蚀与防护学报, 2010, 30: 379)
[10] Xu Y K, Zhu S, Jin X Y. Structure and development of polytetrafluoroethylene anti-corrosion filtration materials [J]. J. Text. Res., 2017, 38(8): 161
[10] (徐玉康, 朱尚, 靳向煜. 聚四氟乙烯耐腐蚀过滤材料结构特征及发展趋势 [J]. 纺织学报, 2017, 38(8): 161)
[11] Gu L J. Research progress of polytetrafluoroethylene and its application [J]. Zhejiang Chem. Ind., 2020, 51(3): 1
[11] (顾榴俊. 聚四氟乙烯及其应用研究进展 [J]. 浙江化工, 2020, 51(3): 1)
[12] Zhang L, Li Y H. Current properties and applications of polytetrafluoroethylene [J]. Sci. Technol. Consult. Herald, 2012, (4): 111
[12] (张林, 李玉海. 聚四氟乙烯的性能与应用现状 [J]. 科技创新导报, 2012, (4): 111)
[13] Sawyer W G, Freudenberg K D, Bhimaraj P, et al. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles [J]. Wear, 2003, 254: 573
doi: 10.1016/S0043-1648(03)00252-7
[14] Huang Z G, Xu S Z, Wei H, et al. Application of polytetrafluoroethylene in turbine oil system sealing [J]. Plant Maint. Eng., 2021, (21): 67
[14] (黄治国, 徐生智, 魏辉 等. 聚四氟乙烯在汽轮机油系统密封中的应用 [J]. 设备管理与维修, 2021, (21): 67)
[15] Lu F K, Wang Y T, Ma M. Polytetrafluoroethylene in pneumatic valves [J]. China Sci. Technol. Inform., 2018, (21): 44
[15] (鹿峰凯, 王业泰, 马明. 聚四氟乙烯在气动阀中的应用 [J]. 中国科技信息, 2018, (21): 44)
[16] Huang Y, Wang W D, Huang W, et al. Application of PTFE in sliding bearing [J]. Organo-Fluorine Ind., 2020, (4): 47
[16] (黄彧, 王文东, 黄炜 等. 聚四氟乙烯在滑动轴承中的应用 [J]. 有机氟工业, 2020, (4): 47)
[17] Zhang J A, Zhao W D. Polytetrafluoroethylene in slipform construction [J]. Technol. Innovat. Appl., 2021, 11(21): 164
[17] (张金安, 赵卫冬. 聚四氟乙烯在滑模施工中的应用 [J]. 科技创新与应用, 2021, 11(21): 164)
[18] Liu J X, Meng Z F, Cui K W, et al. Polytetrafluoroethylene products and its application [J]. Organo-Fluorine Ind., 2020, (3): 17
[18] (刘景霞, 孟章富, 崔坤伟 等. 聚四氟乙烯制品及其应用 [J]. 有机氟工业, 2020, (3): 17)
[19] Kou W T, Xu Y K, Yang X H. Research progress of polytetrafluoroethylene (PTFE) post-treatment technology for bag filter [J]. Mod. Silk Sci. Technol., 2020, 35(5): 34
[19] (寇婉婷, 徐玉康, 杨旭红. 袋式除尘滤料的聚四氟乙烯后处理技术研究进展 [J]. 现代丝绸科学与技术, 2020, 35(5): 34)
[20] Soo J C, Monaghan K, Lee T, et al. Air sampling filtration media: Collection efficiency for respirable size-selective sampling [J]. Aerosol Sci. Technol., 2016, 50: 76
doi: 10.1080/02786826.2015.1128525
[21] Wang H T. Polymer with good biocompatibility [J]. China Strat. Emerg. Ind., 2018, (4): 172
[21] (王浩同. 良好生物相容性的高分子材料 [J]. 中国战略新兴产业, 2018, (4): 172)
[22] Ma L. Study on surface chemical modification and biocompatibility of PTFE membrane [J]. Zhengzhou: Zhengzhou University, 2020: 1
[22] (马雷. PTFE膜的表面化学改性及其生物相容性的研究 [D]. 郑州: 郑州大学, 2020: 1)
[23] Yin X B, Li Y Q, Gao R J. Preparation of superhydrophobic surface on copper substrate and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 93
[23] (尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 93)
[24] Jiang F, Zhao Y, Hu J M. Research advance in application of superhydrophobic surfaces in corrosion protection of metals [J]. Surf. Technol., 2020, 49(2): 109
[24] (蒋帆, 赵越, 胡吉明. 超疏水表面在金属防护中应用的研究进展 [J]. 表面技术, 2020, 49(2): 109)
[25] Young T. III. An essay on the cohesion of fluids [J]. Philos. Trans. Roy. Soc. Lond., 1805, 95: 65
[26] Li X M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces [J]. Chem. Soc. Rev., 2007, 36: 1350
doi: 10.1039/b602486f
[27] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
doi: 10.1021/ie50320a024
[28] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Farad. Soc., 1944, 40: 546
doi: 10.1039/tf9444000546
[29] Song K F. Preparation and tribological properties of complex textured PTFE surfaces by embossing and thermal annealing [D]. Qinhuangdao: Yanshan University, 2020: 1
[29] (宋克峰. 模压烧结制备复杂织构的PTFE表面及其摩擦学性能 [D]. 秦皇岛: 燕山大学, 2020: 1)
[30] Gao J, Deng Y J, Peng L F, et al. Water-repellent hierarchical microstructured PTFE films via micro powder hot embossing [J]. J. Mater. Process. Technol., 2021, 297: 117261
doi: 10.1016/j.jmatprotec.2021.117261
[31] Zhan Y L, Ruan M, Li W, et al. Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior [J]. Colloid. Surf. A, 2017, 535: 8
doi: 10.1016/j.colsurfa.2017.09.018
[32] Pachchigar V, Ranjan M, Sooraj K P, et al. Self-cleaning and bouncing behaviour of ion irradiation produced nanostructured superhydrophobic PTFE surfaces [J]. Surf. Coat. Technol., 2021, 420: 127331
doi: 10.1016/j.surfcoat.2021.127331
[33] Pachchigar V, Ranjan M, Mukherjee S. Role of hierarchical protrusions in water repellent superhydrophobic PTFE surface produced by low energy ion beam irradiation [J]. Sci. Rep., 2019, 9: 8675
doi: 10.1038/s41598-019-45132-z pmid: 31209236
[34] Garg S K, Datta D P, Ghatak J, et al. Tunable wettability of Si through surface energy engineering by nanopatterning [J]. RSC Adv., 2016, 6: 48550
doi: 10.1039/C6RA04906K
[35] Pachchigar V, Gaur U K, Amrutha T V, et al. Hydrophobic to superhydrophobic and hydrophilic transitions of Ar plasma-nanostructured PTFE surfaces [J]. Plasma Process. Polym., 2022, 19: e2200037
[36] Wang X G, Zhu X M, Yin Y Z. Optimisation of plasma etching processes [J]. China New Technol. Prod., 2010, (14): 22
[36] (王晓光, 朱晓明, 尹延昭. 等离子体刻蚀工艺的优化研究 [J]. 中国新技术新产品, 2010, (14): 22)
[37] Yang S G, Li X K, Luo S D, et al. Electrostatic spinning technology and its application progress [J]. Sci. Technol., 2014, (12): 85
[37] (杨守共, 李向葵, 罗素丹 等. 静电纺丝技术及其应用进展 [J]. 科技展望, 2014, (12): 85)
[38] Ji J, Dai L X. Research progress of electrostatic spinning technology and its application [J]. Sci. Technol. Inform., 2009, (33): 118
[38] (纪杰, 戴礼兴. 静电纺丝技术研究进展及其应用 [J]. 科技资讯, 2009, (33): 118)
[39] Goessi M, Tervoort T, Smith P. Melt-spun poly (tetrafluoroethylene) fibers [J]. J. Mater. Sci., 2007, 42: 7983
doi: 10.1007/s10853-006-1266-2
[40] Feng S S, Zhong Z X, Wang Y, et al. Progress and perspectives in PTFE membrane: Preparation, modification, and applications [J]. J. Membrane Sci., 2018, 549: 332
doi: 10.1016/j.memsci.2017.12.032
[41] Pang H L, Tian K X, Li Y P, et al. Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination [J]. Sep. Purif. Technol., 2021, 274: 118186
doi: 10.1016/j.seppur.2020.118186
[42] Wang F Z, Wu J W, et al. Modern Ion Plating Technology [M]. Beijing: Machinery Industry Press, 2021: 139
[42] (王福贞, 武俊伟 等. 现代离子镀膜技术 [M]. 北京: 机械工业出版社, 2021: 139)
[43] Kim H M, Sohn S, Ahn J S. Transparent and super-hydrophobic properties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat-CVD methods [J]. Surf. Coat. Technol., 2013, 228: S389
doi: 10.1016/j.surfcoat.2012.05.085
[44] Shao J J, Ren Z L, Yang Y L, et al. Low temperature super-hydrophobicity of magnetron sputtered polytetrafluoroethylene coatings [J]. Chin. J. Vac. Sci. Technol., 2017, 37: 154
[44] (邵晶晶, 任芝龙, 杨雅伦 等. 磁控溅射制备聚四氟乙烯低温超疏水薄膜 [J]. 真空科学与技术学报, 2017, 37: 154)
[45] Eshaghi A, Mesbahi M, Aghaei A A. Transparent hierarchical micro-nano structure PTFE-SiO2 nanocomposite thin film with superhydrophobic, self-cleaning and anti-icing properties [J]. Optik, 2021, 241: 166967
doi: 10.1016/j.ijleo.2021.166967
[46] Tam J, Lau J C F, Erb U. Thermally robust non-wetting Ni-PTFE electrodeposited nanocomposite [J]. Nanomaterials, 2018, 9: 2
doi: 10.3390/nano9010002
[47] Zhu X, Feng S S, Zhao S F, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification [J]. J. Membrane Sci., 2020, 594: 117473
doi: 10.1016/j.memsci.2019.117473
[48] Wang K W, Xiong P, Xu X P, et al. Chemically robust carbon nanotube-PTFE superhydrophobic thin films with enhanced ability of wear resistance [J]. Prog. Nat. Sci.: Mater. Inter., 2017, 27: 396
doi: 10.1016/j.pnsc.2017.04.004
[49] Shao W F, Liu D Q, Cao T S, et al. Study on favorable comprehensive properties of superhydrophobic coating fabricated by polytetrafluoroethylene doped with graphene [J]. Adv. Compos. Hybrid Mater., 2021, 4: 521
doi: 10.1007/s42114-021-00243-y
[50] Cho E, Kim S H, Kim M, et al. Super-hydrophobic and antimicrobial properties of Ag-PPFC nanocomposite thin films fabricated using a ternary carbon nanotube-Ag-PTFE composite sputtering target [J]. Surf. Coat. Technol., 2019, 370: 18
doi: 10.1016/j.surfcoat.2019.04.045
[1] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[2] 黄志凤, 雍奇文, 房蕊, 谢治辉. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[3] 陈异凡, 孟凡帝, 曲优异, 方芷晴, 刘莉, 王福会. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 345-351.
[4] 罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[5] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[6] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[7] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[8] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[9] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[10] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[11] 任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[12] 张方铭,曾志翔,王刚,陈军君,徐勇,王立平. Q235钢超疏水表面制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 617-623.
[13] 吕文静,张颖君,师超,邵亚薇,王艳秋,孟国哲. 水溶性掺杂聚苯胺的制备及其性能研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 519-524.
[14] 孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[15] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.