Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 619-629     CSTR: 32134.14.1005.4537.2022.214      DOI: 10.11902/1005.4537.2022.214
  研究报告 本期目录 | 过刊浏览 |
在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用
周坤1, 柳鑫华2(), 刘帅2
1.河北化工医药职业技术学院 石家庄 050026
2.唐山师范学院化学系 唐山 0630000
Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium
ZHOU Kun1, LIU Xinhua2(), LIU Shuai2
1.Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
2.Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
全文: PDF(6149 KB)   HTML
摘要: 

选用脐橙皮提取物 (NOPE) 作为HCl环境中316L钢的缓蚀剂。通过简单的乙醇-丙酮回流法提取获得NOPE。通过红外光谱和紫外光谱验证了脐橙皮提取物的主要成分及其在盐酸中的稳定性。采用失重法、动态电位极化法、线性极化和电化学阻抗谱法研究了NOPE在0.5mol/L HCl溶液中对316L钢的缓蚀性能。通过ΔGads0ΔHads0ΔSads0对它们的吸附性能进行了计算。结果表明,随着NOPE浓度的增加,腐蚀速率的降低,阳极电流的减少和活性腐蚀部位的阻断,使缓蚀效率提高。当NOPE的加入量为0.5 g/L时,体系的缓蚀效率最高为90.5% (失重法) 和87.3% (电化学法)。与空白体系相比,添加NOPE后,体系的热力学活化参数 (活化能) Ea明显增大,(Ea-ΔHa0) 的差值约等于RT的平均值 (2.64 kJ/mol),因此,可以推断,腐蚀过程为单分子反应。采用Langmuir等温线拟合金属表面的吸附过程,进一步证明了该吸附为单分子层吸附。通过扫描电镜和能谱分析证明了NOPE在钢表面的作用降低了316L钢的酸腐蚀。在0.5 mol/L HCl溶液体系中,NOPE对L316钢具有较好的缓蚀性能,是一种在酸洗领域中有着较好应用前景的绿色缓蚀剂,可以为植物提取类缓蚀剂的发展提供一定的指导。

关键词 脐橙皮提取物缓蚀剂极化阻抗表面分析    
Abstract

To promote the rapid development of green plant extract inhibitor, navel orange peel extract (NOPE) was obtained by a simple ethanol-acetone reflux method, which then was assessed as inhibitor for 316L steel in hydrochloric acid medium. The main components of navel orange peel extract (NOPE) and its stability in hydrochloric acid were confirmed by infrared spectroscopy (FTIR) and ultraviolet spectroscopy (UV). The corrosion inhibition performance of NOPE to 316L steel in 0.5 mol/L HCl solution was investigated using mass loss method, dynamic potential polarization method (PDP), linear polarization method (LPR) and electrochemical impedance spectroscopy (EIS). Their adsorption properties were calculated with items of ΔGads0, ΔHads0 and ΔSads0. The results show that with the increase of the concentration of NOPE, the steel corrosion rate is reduced, the anode current is reduced and the active corrosion site is blocked, so the inhibition efficiency is improved. When the concentration of NOPE was 0.5 g/L, the maximum corrosion inhibition efficiency was 90.5% (masslessness method) and 87.3% (electrochemical method) respectively. Compared with the blank system, the thermodynamic activation parameter (activation energy) Ea significantly increased in the system with NOPE, and the difference of (Ea-ΔHa0) was about equal to the average value of RT (2.64 kJ/mol). Therefore, it can be inferred that the corrosion process was a single molecule reaction. The adsorption process on the steel surface was fitted by Langmuir isotherm, which further proved that the adsorption was monolayer adsorption. The better corrosion inhibition performance of NOPE for L316 steel in 0.5 mol/L HCl solution system can also be proved by the observation and detection with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In sum, the NOPE is a green inhibitor with a good application prospect in the field of pickling and can provide certain guidance for the development of plant extract inhibitor.

Key wordsnavel orange peel extract    corrosion inhibitor    polarization    impedance    surface analysis
收稿日期: 2022-06-29      32134.14.1005.4537.2022.214
ZTFLH:  TG174  
基金资助:河北省自然科学基金(D2022105004);唐山师范学院基金项目(2022C42)
通讯作者: 柳鑫华,E-mail:hualiyiwang@163.com,研究方向为绿色水处理剂
Corresponding author: LIU Xinhua, E-mail: hualiyiwang@163.com
作者简介: 周 坤,男,1979年生,硕士,讲师

引用本文:

周坤, 柳鑫华, 刘帅. 在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(3): 619-629.
ZHOU Kun, LIU Xinhua, LIU Shuai. Corrosion Inhibition of Navel Orange Peel Extract to Stainless Steel in Acidic Medium. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 619-629.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.214      或      https://www.jcscp.org/CN/Y2023/V43/I3/619

图1  NOPE的FTIR图和有无盐酸介质的UV图
图2  NOPE中的橙皮苷与简单黄酮结构式
T / KNOPE / mg·L-1Vi / g·cm-2·h-1ƞi / %
30307.02×10-4-
303303.18×10-454.73
303502.66×10--462.04
3031001.61×10-477.10
3032001.46×10-479.17
3033008.82×10-587.44
3035006.68×10-590.48
3135003.12×10-476.78
3235008.26×10-470.12
3335002.21×10-360.52
表1  失重法计算得出的Vi 值和ƞi 值
图3  316L钢在空白和含有NOPE的0.5 mol/L HCl溶液中的Arrhenius图和碳钢溶解反应的过渡态图
ContentCinh / mg·h-1Amg·h-1·cm-2EakJ·mol-1ΔHa0kJ·mol-1ΔSa0J·mol-1·K-1
07.56×10658.3055.66-139.35
303.89×10870.1867.54-89.34
501.34×10973.7971.15-79.07
1001.98×101081.5278.88-56.68
2002.81×101082.7580.11-53.78
3005.47×101191.4088.76-29.07
5003.32×101296.5493.90-14.08
表2  316L钢在空白和含有NOPE的0.5 mol/L HCl溶液中热力学活化参数
图4  NOPE在0.5 mol/L HCl溶液中对316L钢的Langmuir吸附等温线
T / KKads / L·g-1R2ΔGads0 / kJ·mol-1
30335.970.9987-26.43
31325.380.9977-26.39
32318.380.9937-26.37
33314.310.9958-26.49
表3  不同温度下,在0.5 mol/L HCl溶液中316L钢表面对NOPE的吸附热力学参数
图5  在0.5 mol/L HCl中316L钢对NOPE吸附的lnKads与T-1关系图
图6  316L钢在0.5 mol/L HCl溶液中加入不同浓度NOPE和不加入NOPE的EOCP-t的曲线
Cinh / mg·L-1Ecorr / mVIcorr / mA·cm-2βa / mV·dec-1βc / mV·dec-1ηPDP / %Rp / Ω·cm²ηLPR / %
0-8710.44146123-42.70-
30-8500.2168.510751.3693.2654.21
50-8410.1864.512258.86115.5563.04
100-8360.1049.810776.57159.5173.23
200-8260.0946.711479.43180.8676.39
300-8180.0636.511485.25224.8281.01
500-8080.0532.812188.82335.9887.29
表4  316L钢在0.5 mol/L HCl溶液中加入和不加入不同浓度的NOPE时的动态电位极化和线极化数据
图7  316L钢在含不同浓度NOPE的0.5 mol/L HCl溶液中的动电位极化曲线
图8  NOPE阻止活性位点示意图
图9  316L钢在不同浓度NOPE的0.5 mol/L HCl介质中的阻抗谱及等效电路
Cinh / mg·L-1Rs / Ω·cm2Rc / Ω·cm2Cd / μf·cm-2CPEχ2η / %
Y0 / μΩ-1·s n ·cm-2n
00.5172.22410.13477.360.92010.003446-
300.53151.03252.55297.600.92240.00416052.18
500.44211.01257.27299.700.91280.00383265.77
1000.46266.27289.79303.920.91890.00410972.86
2000.41282.91277.68305.980.90660.00461074.47
3000.45361.10320.29308.140.91220.00326080.00
5000.47571.48137.47224.620.92600.00150587.36
表5  316L钢在含不同浓度NOPE的0.5 mol/L HCl介质中的EIS拟合参数
图10  316L钢试片表面的SEM照片和EDS分析结果
图11  316L钢在含NOPE的0.5 mol/L HC溶液中的缓蚀机理
Extract raw materialSteelHCl / mol·L-1Conc.ηmax / %Ref.
Winged beanReinforced steel0.51 g·L-195[36]
Lychee fruitMild steel0.50.7 g·L-193.4[37]
Robinia pseudoacacia leavesMild steel0.52 g·L-192.0[38]
Akebia trifoliate koiaz peelsMild steel10.8 g·L-187.6[18]
Mimosa pudica leavesMild steel11 g·L-177.3[39]
Lavandula maireiMild steel10.4 g·L-192.0[40]
Garlic3040.58 cc·L-183.9[41]
Thymus vulgaris plant leaves30412%62.2[42]
Spinach316L0.50.590.5NOPE
表6  HCl溶液中用于钢的提取物缓蚀剂的比较
1 Yang X Y, Yang Y T, Lu X P, et al. Research progress of corrosion inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
1 杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
2 da Silva M V L, de Britto Policarpi E, Spinelli A. Syzygium cumini leaf extract as an eco-friendly corrosion inhibitor for carbon steel in acidic medium [J]. J. Taiwan Inst. Chem. Eng., 2021, 129: 342
doi: 10.1016/j.jtice.2021.09.026
3 Fernandes C M, Alvarez L X, dos Santos N E, et al. Green synthesis of 1-benzyl-4-phenyl-1H-1, 2, 3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses [J]. Corros. Sci., 2019, 149: 185
doi: 10.1016/j.corsci.2019.01.019
4 Fernandes C M, da S Ferreira Fagundes T, dos Santos N E, et al. Ircinia strobilina crude extract as corrosion inhibitor for mild steel in acid medium [J]. Electrochim. Acta, 2019, 312: 137
doi: 10.1016/j.electacta.2019.04.148
5 Tan B C, Zhang S T, Li W P, et al. Food spices 2, 5-dihydroxy-1, 4-dithiane as an eco-friendly corrosion inhibitor for X70 steel in 0.5 mol/L H2SO4 Solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 469
5 谭伯川, 张胜涛, 李文坡 等. 食用香料1, 4-二硫-2, 5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 469
doi: 10.11902/1005.4537.2020.100
6 Tan B C, Zhang S T, Qiang Y J, et al. Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium [J]. J. Mol. Liq., 2020, 298: 111975
doi: 10.1016/j.molliq.2019.111975
7 Tan B C, Zhang S T, Liu H Y, et al. Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1, 3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: Combination of experimental and theoretical researches [J]. J. Colloid Interface Sci., 2019, 538: 519
doi: 10.1016/j.jcis.2018.12.020
8 Chung I M, Malathy R, Priyadharshini R, et al. Inhibition of mild steel corrosion using Magnolia kobus extract in sulphuric acid medium [J]. Mater. Today Commun., 2020, 25: 101687
9 Raja P B, Sethuraman M G. Natural products as corrosion inhibitor for metals in corrosive media-A review [J]. Mater. Lett., 2008, 62: 113
doi: 10.1016/j.matlet.2007.04.079
10 de Souza F S, Spinelli A. Caffeic acid as a green corrosion inhibitor for mild steel [J]. Corros. Sci., 2009, 51: 642
doi: 10.1016/j.corsci.2008.12.013
11 Obot I B, Madhankumar A. Enhanced corrosion inhibition effect of tannic acid in the presence of gallic acid at mild steel/HCl acid solution interface [J]. J. Ind. Eng. Chem., 2015, 25: 105
doi: 10.1016/j.jiec.2014.10.019
12 Ikeuba I, Ita B I, Okafor P C, et al. Green corrosion inhibitors for mild steel in H2SO4 solution: Comparative study of flavonoids extracted from gongronema latifoliunm with crude the extract [J]. Prot. Met. Phys. Chem. Surf., 2015, 51: 1043
doi: 10.1134/S2070205115060118
13 Odewunmi N A, Umoren S A, Gasem Z M. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution [J]. J. Environ. Chem. Eng., 2015, 3: 286
doi: 10.1016/j.jece.2014.10.014
14 Grassino A N, Halambek J, Djaković S, et al. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor [J]. Food Hydrocoll., 2016, 52: 265
doi: 10.1016/j.foodhyd.2015.06.020
15 da Rocha J C, Gomes J A C P, D'Elia E, et al. Grape pomace extracts as green corrosion inhibitors for carbon steel in hydrochloric acid solutions [J]. Int. J. Electrochem. Sci., 2012, 7: 11941
16 Singh M R, Gupta P, Gupta K. The litchi (Litchi Chinensis) peels extract as a potential green inhibitor in prevention of corrosion of mild steel in 0.5M H2SO4 solution [J]. Arab. J. Chem., 2019, 12: 1035
doi: 10.1016/j.arabjc.2015.01.002
17 Loto R T, Mbah E H, Ugada J I. Corrosion inhibition effect of citrus sinensis essential oil extract on plain carbon steel in dilute acid media [J]. South Afr. J. Chem. Eng., 2021, 35: 159
18 Zhang M Q, Guo L, Zhu M Y, et al. Akebia trifoliate koiaz peels extract as environmentally benign corrosion inhibitor for mild steel in HCl solutions: Integrated experimental and theoretical investigations [J]. J. Ind. Eng. Chem., 2021, 101: 227
doi: 10.1016/j.jiec.2021.06.009
19 Alrefaee S H, Rhee K Y, Verma C, et al. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements [J]. J. Mol. Liq., 2021, 321: 114666
doi: 10.1016/j.molliq.2020.114666
20 Saxena A, Thakur K K, Bhardwaj N. Electrochemical studies and surface examination of low carbon steel by applying the extract of Musa acuminata [J]. Surf. Interfaces, 2020, 18: 100436
21 Odewunmi N A, Umoren S A, Gasem Z M. Utilization of watermelon rind extract as a green corrosion inhibitor for mild steel in acidic media [J]. J. Ind. Eng. Chem., 2015, 21: 239
22 Senthilvadivu1 B, Aswini V, Kumar K S. Anti-corrosive behavior of ethanolic extract of banana peel against acidic media and their thermodynamic studies [J]. Inter. J. Sci. Res., 2017, 6: 1762
23 Nagarajaiah S B, Prakash J. Chemical composition and antioxidant potential of peels from three varieties of banana [J]. As. J. Food Ag-Ind., 2011, 4: 31
24 Wang L Z, Huang M, Li X H. Synergistic inhibition effect of walnut green husk extract and potassium iodide on corrosion of steel in citric acid solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 819
24 王丽姿, 黄 苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2021, 41: 819
doi: 10.11902/1005.4537.2020.218
25 Zhang F, Xu X, Lei R, et al. Inhibition effect of orange peel extract on aluminum in hydrochloric acid solution [J]. J. Southwest For. Univ., 2022, 42: 103
25 张 富, 徐 昕, 雷 然 等. 橙子皮提取物对HCl溶液中铝的缓蚀作用研究 [J]. 西南林业大学学报(自然科学), 2022, 42: 103
26 Li X H, Deng S D, Xie X G, et al. Inhibition effect of bamboo leaves' extract on steel and zinc in citric acid solution [J]. Corros. Sci., 2014, 87: 15
doi: 10.1016/j.corsci.2014.05.013
27 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
27 王 霞, 任帅飞, 张代雄 等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267
28 Zhang S H, Liu S J, Zhu Z X, et al. Research on the extraction condition and corrosion inhibition performance of actire principle in pomelo peel [J]. Fine Speci. Chem., 2017, 25(1): 27
28 张世红, 刘绍君, 朱忠祥 等. 柚子皮有效成分的提取及其缓蚀性能研究 [J]. 精细与专用化学品, 2017, 25(1): 27
29 Ituen E B, Solomon M M, Umoren S A, et al. Corrosion inhibition by amitriptyline and amitriptyline based formulations for steels in simulated pickling and acidizing media [J]. J. Pet. Sci. Eng., 2019, 174: 984
doi: 10.1016/j.petrol.2018.12.011
30 Hamilton-Amachree A, Iroha N B. Corrosion inhibition of API 5L X80 pipeline steel in acidic environment using aqueous extract of Thevetia peruviana [J]. Chem. Int., 2020, 6: 110
31 Mobin M, Basik M, El Aoufir Y. Corrosion mitigation of mild steel in acidic medium using Lagerstroemia speciosa leaf extract: A combined experimental and theoretical approach [J]. J. Mol. Liq., 2019, 286: 110890
doi: 10.1016/j.molliq.2019.110890
32 Jmiai A, Tara A, El Issami S, et al. A new trend in corrosion protection of copper in acidic medium by using Jujube shell extract as an effective green and environmentally safe corrosion inhibitor: Experimental, quantum chemistry approach and Monte Carlo simulation study [J]. J. Mol. Liq., 2021, 322: 114509
doi: 10.1016/j.molliq.2020.114509
33 de Britto Policarpi E, Spinelli A. Application of Hymenaea stigonocarpa fruit shell extract as eco-friendly corrosion inhibitor for steel in sulfuric acid [J]. J Taiwan Inst. Chem. Eng., 2020, 116: 215
doi: 10.1016/j.jtice.2020.10.024
34 Liu X H, Rui Y L, Tian H J. Studies on the inhibition Mechanism of Amino acid inhibiters in the process of Acid Cleaning [J]. Clean. World, 2008, 24(7): 23
34 柳鑫华, 芮玉兰, 田惠娟. 酸洗过程中氨基酸类缓蚀剂缓蚀机理研究进展 [J]. 清洗世界, 2008, 24(7): 23
35 Aadad H E, Galai M, Ouakki M, et al. Improvement of the corrosion resistance of mild steel in sulfuric acid by new organic-inorganic hybrids of Benzimidazole-Pyrophosphate: Facile synthesis, characterization, experimental and theoretical calculations (DFT and MC) [J]. Surf. Interfaces, 2021, 24: 101084
36 Zakaria F A, Hamidon T S, Hussin M H. Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte [J]. J. Indian Chem. Soc., 2022, 99: 100329
doi: 10.1016/j.jics.2021.100329
37 Liao L L, Mo S, Luo H Q, et al. Corrosion protection for mild steel by extract from the waste of lychee fruit in HCl solution: Experimental and theoretical studies [J]. J. Colloid Interface Sci., 2018, 520: 41
doi: 10.1016/j.jcis.2018.02.071
38 Yüce A O. Corrosion inhibition behavior of Robinia pseudoacacia leaves extract as a eco-friendly inhibitor on mild steel in acidic media [J]. Met. Mater. Int., 2020, 26: 456
doi: 10.1007/s12540-019-00509-7
39 Agbaffa E B, Akintemi E O, Uduak E A, et al. Corrosion inhibition potential of the methanolic crude extract of Mimosa pudica leaves for mild steel in 1 M hydrochloric acid solution by weight loss method [J]. Sci. Lett., 2021, 15: 23
40 Berrissoul A, Ouarhach A, Benhiba F, et al. Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach [J]. J. Mol. Liq., 2020, 313: 113493
doi: 10.1016/j.molliq.2020.113493
41 Asfia M P, Rezaei M, Bahlakeh G. Corrosion prevention of AISI 304 stainless steel in hydrochloric acid medium using garlic extract as a green corrosion inhibitor: Electrochemical and theoretical studies [J]. J. Mol. Liq., 2020, 315: 113679
doi: 10.1016/j.molliq.2020.113679
42 Ehsani A, Mahjani M G, Hosseini M, et al. Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory [J]. J. Colloid Interface Sci., 2017, 490: 444
doi: 10.1016/j.jcis.2016.11.048
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[3] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[4] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[5] 董红梅, 李宝毅, 冉博元, 王琦, 牛宇岚, 丁莉峰, 强玉杰. 一种环保型缓蚀剂利拉利汀对紫铜在硫酸中的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[6] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[7] 李树丽, 邓书端, 李向红. 铝植物缓蚀剂的研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[8] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[9] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[10] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[11] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[12] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[13] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[14] 黄苗, 王丽姿, 马晓青, 李向红. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2023, 43(3): 471-480.
[15] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.