Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 601-610     CSTR: 32134.14.1005.4537.2022.259      DOI: 10.11902/1005.4537.2022.259
  研究报告 本期目录 | 过刊浏览 |
高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为
周志平1, 吴大康2, 张宏福3, 张磊4, 李明星3, 张志鑫5, 钟显康5()
1.中国石油长庆油田分公司 西安 710018
2.中国石油长庆油田分公司第十二采油厂 庆阳 745100
3.中国石油长庆油田分公司油气工艺研究院 西安 710018
4.中国石油长庆油田分公司第四采气厂 西安 710016
5.西南石油大学石油与天然气工程学院 成都 610500
Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃
ZHOU Zhiping1, WU Dakang2, ZHANG Hongfu3, ZHANG Lei4, LI Mingxing3, ZHANG Zhixin5, ZHONG Xiankang5()
1.PetroChina Changqing Oilfield Company, Xi'an 710018, China
2.No. 12 Oil Production Plant of PetroChina Changqing Oilfield Company, Qingyang 745100, China
3.PetroChina Changqing Oilfield Company Oil and Gas Technology Research Institute, Xi'an 710018, China
4.No. 4 Gas Production Plant of PetroChina Changqing Oilfield Company, Xi'an 710016, China
5.School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(7758 KB)   HTML
摘要: 

采用扫描电子显微镜、X射线光电子能谱、高温拉伸实验及高温高压腐蚀实验,研究温度对L80钢拉伸断裂行为及其在CO2/H2S模拟工况下腐蚀行为的影响规律。结果表明:温度对屈服强度和抗拉强度影响显著,且屈服强度的衰减明显大于抗拉强度。拉伸断裂方式由常温时的微孔聚集配合剪切撕裂转变为高温下的微孔聚合主导。腐蚀速率随温度升高明显增加,且温度越高增幅越大。腐蚀反应由H2S腐蚀控制,腐蚀产物呈双层结构,温度对其结构形式和晶体形态影响显著。随温度升高,位于产物膜底层FeS的占比增加,表层FeCO3的致密性增强。研究结果对L80油套管在极端工况中的服役寿命及适应性分析具有参考价值。

关键词 高温高温拉伸断裂机理高温高压腐蚀腐蚀产物    
Abstract

In this article, the tensile fracture behavior of L80 steel in air at 25-350 oC and its high-temperature and high-pressure corrosion behavior in CO2/H2S in an artificial formation water at 150-350 oC are investigated by means of mass loss measurement, scanning electron microscopy, X-ray photoelectron spectroscopy. The results suggest that the yield strength and tensile strength of L80 both appear to severe decline with the increasing temperature, while the decay of the former is significantly greater than that of the latter. Meanwhile, the tensile fracture mechanism of L80 steel changes from microporous aggregation with shear tearing at room temperature to a dominant microporous aggregation at high temperatures. The corrosion rate increases significantly with the increasing temperature, and the higher the temperature, the faster the increase rate. The bilayer structure of the corrosion products and their crystal morphology are markedly affected by temperature, and the percentage of FeS in the inner layer and the compactness of FeCO3 of the outer layer both increase with the increasing temperature. The results of the study may provide a reference for the evaluation of the adaptability of L80 oil casing for service in extreme conditions.

Key wordshigh temperature    high-temperature tensile    fracture mechanism    high temperature and high pressure corrosion    corrosion products
收稿日期: 2022-08-17      32134.14.1005.4537.2022.259
ZTFLH:  TG174  
基金资助:中国石油天然气股份有限公司重大科技项目(2021DJ5203)
通讯作者: 钟显康,E-mail:zhongxk@swpu.edu.cn,研究方向为油气田腐蚀与防护
Corresponding author: ZHONG Xiankang, E-mail: zhongxk@swpu.edu.cn
作者简介: 周志平,男,1966年生,硕士,教授级高级工程师

引用本文:

周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 601-610.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.259      或      https://www.jcscp.org/CN/Y2023/V43/I3/601

图1  实验用L80套管钢显微组织
图2  L80钢在大气环境中各温度下的拉伸应力-应变曲线
图3  L80钢的力学性能随温度的变化情况
图4  L80钢在不同温度下的拉伸断口宏观形貌
图5  不同温度下L80钢拉伸断口的裂纹源区微观形貌
图6  不同温度下L80钢在模拟工况中的腐蚀速率
图7  L80钢在不同温度下腐蚀7 d后试样的宏观形貌
图8  L80钢在不同温度下腐蚀7天后的表面SEM形貌
图9  不同温度下试样表面去除腐蚀产物后的SEM形貌
图10  不同温度下腐蚀产物的XPS图谱
1 Yang Y. New progress and next development directions of heavy oil development technologies in Shengli oilfield [J]. Petrol. Geol. Recov. Effic., 2021, 28(6): 1
1 杨 勇. 胜利油田稠油开发技术新进展及发展方向 [J]. 油气地质与采收率, 2021, 28(6): 1
2 Jiang Q, You H J, Pan J J, et al. Preliminary discussion on current status and development direction of heavy oil recovery technologies [J]. Spec. Oil Gas Reserv., 2020, 27(6): 30
doi: 10.3969/j.issn.1006-6535.2020.06.004
2 蒋 琪, 游红娟, 潘竟军 等. 稠油开采技术现状与发展方向初步探讨 [J]. 特种油气藏, 2020, 27(6): 30
3 Li W Z. Evaluation and development countermeasures for nonproducing reserves of heavy oil reservoirs in Shengli oilfield [J]. Spec. Oil Gas Reserv., 2021, 28(2): 63
doi: 10.3969/j.issn.1006-6535.2021.02.009
3 李伟忠. 胜利油田稠油未动用储量评价及动用对策 [J]. 特种油气藏, 2021, 28(2): 63
doi: 10.3969/j.issn.1006-6535.2021.02.009
4 Li J C, Wang L, Ding B D, et al. Present situation and development trend of the thermal/chemical flooding technology of heavy oil [J]. J. Xi'an Shiyou Univ. (Nat. Sci. Ed.), 2010, 25(4): 36
4 李锦超, 王 磊, 丁保东 等. 稠油热/化学驱油技术现状及发展趋势 [J]. 西安石油大学学报(自然科学版), 2010, 25(4): 36
5 Liu D L, Gu J J. Present situation and development trend of heavy oil thermal recovery technology [J]. Contemp. Chem. Ind., 2018, 47: 1445
5 刘栋梁, 顾继俊. 稠油热采技术现状及发展趋势 [J]. 当代化工, 2018, 47: 1445
6 Wang Q Y, He H J. Technical progress and novel methods of foreign thermal recovery [J]. Sino-Global Energy, 2013, 18(8): 33
6 王秋语, 何胡军. 国外热力采油技术进展及新方法 [J]. 中外能源, 2013, 18(8): 33
7 Li Z K. Damage mechanism of casing for thermal recovery of heavy oil well and casing coupon technology experiment [J]. Spec. Oil Gas Reserv., 2021, 28(2): 171
doi: 10.3969/j.issn.1006-6535.2021.02.026
7 李宗锟. 稠油热采井套管损坏机理及套管挂片技术实验 [J]. 特种油气藏, 2021, 28(2): 171
doi: 10.3969/j.issn.1006-6535.2021.02.026
8 Qian F, Gao D L. A mechanical model for predicting casing creep load in high temperature wells [J]. J. Nat. Gas Sci. Eng., 2011, 3: 530
doi: 10.1016/j.jngse.2011.04.003
9 Zhu G Y, Zhang S C, Huang H P, et al. Induced H2S formation during steam injection recovery process of heavy oil from the Liaohe Basin, NE China [J]. J. Pet. Sci. Eng., 2010, 71: 30
doi: 10.1016/j.petrol.2010.01.002
10 Lin R Y, Song D P, Wang X W, et al. Experimental determination of in situ hydrogen sulfide production during thermal recovery processes [J]. Energy Fuels, 2016, 30: 5323
doi: 10.1021/acs.energyfuels.5b02646
11 Xiao F, Li B C, Wang D J, et al. Mechanical analysis on casing damage and discussion on dynamic mechanism [J]. Petrol. Geol. Recov. Effic., 2008, 15(5): 98
11 肖 斐, 李邦超, 王德军 等. 套管损坏的力学分析及动力学机制探讨 [J]. 油气地质与采收率, 2008, 15(5): 98
12 Jia J H. Casing failure mechanism of thermal production wells and casing strength optimization design [J]. J. Saf. Sci. Technol., 2011, 7(9): 121
12 贾江鸿. 热采井套损机理及套管强度优化设计 [J]. 中国安全生产科学技术, 2011, 7(9): 121
13 Lu L J, Feng S B, Zhang B. Method for designing casing stem strength in heavy-oil steam injection wells [J]. J. Oil Gas Technol., 2009, 31: 364
13 路利军, 冯少波, 张 波. 稠油热采井套管柱强度设计方法研究 [J]. 石油天然气学报, 2009, 31: 364
14 Yu X F, Zheng H L, Liu S H. Casing plastic damage analysis considering non-uniform stress in thermal recovery well [J]. J. Plast. Eng., 2016, 23(3): 183
14 余雄风, 郑华林, 刘少胡. 耦合非均匀地应力的热采井套管塑性损伤分析 [J]. 塑性工程学报, 2016, 23(3): 183
15 Zhao M F, Fu A Q, Hu F T, et al. Corrosion behavior and life prediction of high grade OCTG in full-life-cycle environment of high temperature high pressure gas well [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 535
15 赵密锋, 付安庆, 胡芳婷 等. 高钢级油井管在高温高压气井全生命周期环境中的腐蚀行为及寿命预测 [J]. 中国腐蚀与防护学报, 2021, 41: 535
doi: 10.11902/1005.4537.2020.139
16 Wu Q L, Zhang Z H, Dong X M, et al. Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments [J]. Corros. Sci., 2013, 75: 400
doi: 10.1016/j.corsci.2013.06.024
17 Li Q, Zhang D P, Wang W, et al. Evaluation of actual corrosion status of L80 tubing steel and subsequent electrochemical and SCC investigation in lab [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 317
17 李 清, 张德平, 王 薇 等. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 317
18 Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid [J]. Acta Metall. Sin., 2018, 54: 1399
doi: 10.11900/0412.1961.2018.00033
18 余 军, 张德平, 潘若生 等. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征 [J]. 金属学报, 2018, 54: 1399
19 Sun J B, Sun C, Lin X Q, et al. Effect of chromium on corrosion behavior of P110 steels in CO2-H2S environment with high pressure and high temperature [J]. Materials, 2016, 9: 200
doi: 10.3390/ma9030200
20 Zhao G X, Lv X H. Effect of temperature on the corrosion rate of oil tubing and casing [J]. J. Xi'an Shiyou Univ. (Nat. Sci. Ed.), 2008, 23(4): 74
20 赵国仙, 吕祥鸿. 温度对油套管用钢腐蚀速率的影响 [J]. 西安石油大学学报(自然科学版), 2008, 23(4): 74
21 Zhang Q, Li A Q, Wen J B, et al. Effect of temperature on CO2/H2S corrosion rate of oil tube steels [J]. Mater. Prot., 2004, 37(4): 38
21 张 清, 李全安, 文九巴 等. 温度对油管钢CO2/H2S腐蚀速率的影响 [J]. 材料保护, 2004, 37(4): 38
22 Sui Y Y, Sun J B, Sun C, et al. Effect of temperature and CO2/H2S partial pressure ratio on corrosion behaviors of BG90SS tubing steel [J]. Trans. Mater. Heat Treat., 2014, 35(suppl. 2) : 102
22 隋义勇, 孙建波, 孙 冲 等. 温度和CO2/H2S分压比对BG90SS钢管腐蚀行为的影响 [J]. 材料热处理学报, 2014, 35(): 102
23 Gao H L, Zhang X Y, Feng Y R, et al. Development and current situation of pipeline steels [J]. Mater. Mech. Eng., 2009, 33(10): 1
23 高惠临, 张骁勇, 冯耀荣 等. 管线钢的研究进展 [J]. 机械工程材料, 2009, 33(10): 1
24 Miura E, Yoshimi K, Hanada S. Oxygen-molybdenum interaction with dislocations in Nb-Mo single crystals at elevated temperatures [J]. Acta Mater., 2002, 50: 2905
doi: 10.1016/S1359-6454(02)00115-5
25 Ha K F. Microscopic Theory of Mechanical Properties of Metals [M]. Beijing: Science Press, 1983
25 哈宽富. 金属力学性质的微观理论 [M]. 北京: 科学出版社, 1983
26 Wu Y H, Li Y T, Qi H P. High temperature tensile perforamnce of 42CrMo casting ring blank [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 1288
26 武永红, 李永堂, 齐会萍. 42CrMo铸造环坯高温拉伸性能 [J]. 特种铸造及有色合金, 2017, 37: 1288
doi: 10.15980/j.tzzz.2017.12.003
27 Li R Q, Zhang Y, Tian B H, et al. Hot deformation behavior and dynamic recrystallization of Cu-Cr-Zr-Ce alloy at elevated temperature [J]. Trans. Mater. Heat Treat., 2013, 34(suppl. 2) : 10
27 李瑞卿, 张 毅, 田保红 等. Cu-Cr-Zr-Ce合金高温热变形行为及动态再结晶 [J]. 材料热处理学报, 2013, 34(): 10
28 Ebrahimi G R, Keshmiri H, Momeni A, et al. Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni [J]. Mater. Sci. Eng., 2011, 528A: 7488
29 Jiang W, Li Y Z, Shu Y X, et al. Investigation of metallic ductile fracture by void-based meso-damage model [J]. Eng. Mech., 2014, 31(10): 27
29 姜 薇, 李亚智, 束一秀 等. 基于微孔贯通细观损伤模型的金属韧性断裂分析 [J]. 工程力学, 2014, 31(10): 27
30 Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
doi: 10.1115/1.3443401
31 Ingham B, Ko M, Kear G, et al. In situ synchrotron X-ray diffraction study of surface scale formation during CO2 corrosion of carbon steel at temperatures up to 90°C [J]. Corros. Sci., 2010, 52: 3052
doi: 10.1016/j.corsci.2010.05.025
32 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
32 明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
[1] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[3] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] 任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[5] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[6] 吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[7] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[8] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[9] 柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[10] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[11] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[12] 曲作鹏, 张贝贝, 谢广校, 杨宇曦, 王永田, 田欣利, 王海军. 垃圾焚烧炉受热面防护技术的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
[13] 贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[14] 刘姝妤, 耿树江, 马艺萌, 王金龙, 王福会. K444合金表面CVD渗铝涂层在750 ℃空气中耐NaCl腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 321-328.
[15] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.