
两种草本植物群落的防风固沙效能对比
Comparison of windbreak efficiency between two herbaceous plant communities
在沙区植物生态建设过程中,选择什么样的草本植物能达到最佳的防风固沙效果,这仍然是需要深入科学研究的问题。本文利用移动风洞,在野外种植草本植物群落(沙打旺和中科1号羊草),在4种不同植被盖度下(10%、20%、30%和40%)探索其对输沙率与风速廓线的影响,以明晰该植物种类的防风固沙能力,风洞原位测试结果表明:沙打旺的防风固沙效能明显强于羊草,表现为在同等植被覆盖度和风速条件下,沙打旺的输沙率显著小于羊草,风速减少率和风蚀抑制效率明显大于羊草。沙打旺的最佳防风蚀盖度为30%,能抑制近地表20 cm以内约90%的输沙量,羊草植被盖度为32%时,能抑制地表20 cm以内75%的输沙量。从植物形态和结构来看,植物茎杆硬度大、茎多数且数个丛生其防风固沙效果更好。
In the process of plant ecological construction in sandy areas, it is still necessary to conduct in-depth scientific research on what kind of herbaceous plants can achieve the best windbreak effect. This article uses a mobile wind tunnel to plant herbaceous plant communities (Astragalus laxmannii and Leymus chinensis “Zhongke No.1”) in the wild. The effects of two plant communities on sediment transport rate and wind speed profile were explored under four different vegetation cover levels (10%, 20%, 30%, and 40%) to clarify the windbreak and sand fixation ability The wind tunnel field test results show that Astragalus laxmannii has significantly stronger windbreak and sand fixation efficiency than Leymus chinensis, manifested as a significantly lower sediment transport rate than Leymus chinensis under the same vegetation cover and wind speed conditions, but a significantly higher wind speed reduction rate and wind erosion inhibition efficiency than Leymus chinensis. The optimal windproof coverage of Astragalus laxmannii is 30%, which can suppress about 90% of the sediment transport within 20 cm on the surface. When the vegetation coverage of Leymus chinensis is 32%, it can suppress 75% of the sediment transport within 20 cm on the surface. From the perspective of plant morphology and structure, plants with harder stems and multiple clustered stems have better windbreak and sand fixation effects.
输沙率 / 风速廓线 / 移动风洞 / 沙打旺 / 中科1号羊草 {{custom_keyword}} /
sediment transport rate / wind speed profile / mobile wind tunnel / Astragalus laxmannii / Leymus chinensis {{custom_keyword}} /
图3 沙打旺和羊草的风速廓线图Fig. 3 Wind speed profiles of Astragalus laxmannii and Leymus chinensis |
表1 沙打旺和羊草风速廓线的函数拟合Table 1 Function fitting of wind speed profiles for Astragalus laxmannii and Leymus chinensis |
植被盖度/% | 沙打旺函数拟合 | 羊草函数拟合 | ||
0 | y = 0.0239e | R2 = | y = 0.0239e | R2 = |
10 | y = 50.608lnx - 84.817 | R2 = | y = 0.0263e | R2 = |
20 | y = 12.757lnx - | R2 = | y = 41.773lnx - 68.388 | R2 = |
30 | y = 12.718lnx - | R2 = | y = 38.806lnx - 58.989 | R2 = |
40 | y = 9.0382lnx + | R2 = | y = 35.585lnx - 51.675 | R2 = |
表2 不同植被盖度2种草本植物群落的输沙率Table 2 Sand transport rates of two herbal plant communities with different vegetation coverage |
植被盖度/% | 沙打旺 | 羊草 |
注:沙打旺的植被盖度分别是10%、20%、30%和40%;羊草的植被盖度分别是8%、16%、24%和32%。 | ||
10(8) | 12.61 | 46.90 |
20(16) | 3.61 | 32.46 |
30(24) | 1.65 | 13.49 |
40(32) | 0.97 | 7.59 |
表3 不同植被盖度下2种草本植物群落的风蚀抑制效率Table 3 Wind erosion inhibition efficiency of two herbaceous plant communities under different vegetation cover |
植被盖度/% | 沙打旺/% | 羊草/% |
注:沙打旺的植被盖度分别是10%、20%、30%和40%;羊草的植被盖度分别是8%、16%、24%和32%。 | ||
10(8) | 72.44 | 29.10 |
20(16) | 87.43 | 30.39 |
30(24) | 94.61 | 63.49 |
40(32) | 96.55 | 74.96 |
[1] |
Dong Zhibao, Lv P, Zhang Zhengcai et al. Aeolian transport in the field: A comparison of the effects of different surface treatments[J]. Journal of Geophysical Research, 2012, 117: D09210
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
朱震达. 中国沙漠、沙漠化、荒漠化及其治理的对策[M]. 北京: 中国环境科学出版社, 1999.
Zhu Zhenda. China’s deserts, desertification, desertification and its control measures. Beijing: China Environmental Science Press, 1999.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003.
Wu Zheng. Wind and Sand Landforms and Sand Control Engineering. Beijing: Science Press, 2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Miri Abbas, Dragovich Deirdre, Dong Zhibao. Wind-borne sand mass flux in vegetated surfaces-Wind tunnel experiments with live plants[J]. Catena, 2019, 172: 421-434.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
Miri Abbas, Dragovich Deirdre, Dong Zhibao. The response of live plants to airflow-implication for reducing erosion[J]. Aeolian Research, 2018, 33: 93-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Miri Abbas, Dragovich Deirdre, Dong Zhibao. Vegetation morphologic and aerodynamic characteristics reduce aeolian erosion[J]. Scientific Reports, 2017, 7(1): 12831.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Leenders J K, Boxel J H V, Sterk G. The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso[J]. Earth Surface Processes & Landforms, 2007, 32(10): 1454-1474.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
Li J, Okin G S, Alvarez L et al. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassesland of southern New Mexico, USA[J]. Biogeochemistry, 2007, 85(3): 317-332.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
Hao HM, Lu R, Liu Y et al. Effects of shrub patch size succession on plant diversity and soil water content in the water-wind erosion crisscross region on the Loess Plateau[J]. Catena, 2016, 144: 177-183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
Zhang Jieming, Yu Xinxiao, Jia Guodong et al. Determination of optimum vegetation type and layout for soil wind erosion control in desertified land in north China[J]. Ecological Engineering, 2021, 171: 106383.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
Liu Chenchen, Zheng Zhongquan, Cheng Hong et al. Airflow around single and multiple plants[J]. Agricultural and Forest Meteorology, 2018, 252: 27-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
程锋梅, 李生宇, 郑伟, 等. 3类典型株型草本植物对沙面风蚀抑制作用的研究[J]. 干旱区研究, 2022, 39(5): 1526-1533.
Cheng Fengmei, Li shengyu, Zheng Wei et al. Study on wind erosion inhibition of three typical herbaceous plants on sand surface. Arid Zone Research, 2022, 39(5): 1526-1533.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
Bhutto S L, Miri A, Zhang Y et al. Experimental study on the effect of four single shrubs on aeolian erosion in a wind tunnel[J]. Catena, 2022, 212: 106097.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
闫峰, 吴波, 王艳姣. 2000—2011年毛乌素沙地植被生长状况时空变化特征[J]. 地理科学, 2013, 33(5): 602-608.
Yan Feng, Wu Bo, Wang Yanjiao. Spatial and temporal variations of vegetation growth status in Mu Us Sandy Land in 2000—2011. Scientia Geographica Sinica, 2013, 33(5): 602-608.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
白子怡, 董治宝, 南维鸽, 等. 植被盖度对风沙流结构及输沙率的影响[J]. 中国沙漠, 2024, 44(2): 1-10.
Bai Ziyi, Dong Zhibao, Nan Weige et al. The influence of vegetation coverage on the wind sand flow structure and sediment transport rate. Journal of Desert Research, 2024, 44(2): 1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
董治宝, 陈渭南, 董光荣, 等. 植被对风沙土风蚀作用的影响[J]. 环境科学学报, 1996, 16(4): 437-443.
Dong Zhibao, Chen Weinan, Dong Guangrong et al. Influences of vegetation cover on the wind erosion of sandy soil. Acta Scientiae Circumstantiae, 1996, 16(4): 437-443.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Zhang Kai, Wang Zhenghui, Han Guowen et al. Aeolian saltation over plateau gobi: Field studies in the Zhongzaohuo gobi area, Northeastern Tibetan Plateau, China[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2024, 250: 105763
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
Zhang Kai, Tian Jianjin, Wang Zhenghui et al. Protective benefit of folded linear HDPE board sand fences along the Golmud-Korla Railway, China: Field observation and wind tunnel study[J]. Journal of Mountain Science, 2024, 21(7): 2206-2219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
黄银洲, 王乃昂, 何彤慧, 等. 毛乌素沙地历史沙漠化过程与人地关系[J]. 地理科学, 2009, 29(2): 206-211.
Huang Yinzhou, Wang Naiang, He Tonghui et al. Process of historical desertification of Mu Us Desert and relationship between nature and human beings. Scientia Geographica Sinica, 2009, 29(2): 206-211.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
徐志伟, 鹿化煜. 毛乌素沙地风沙环境变化研究的理论和新认识[J]. 地理学报, 2021, 76(9): 2203-2223.
Xu Zhiwei, Lu Huayu. Aeolian environmental change studies in the Mu Us Sandy Land, north-central China: Theory and recent progress. Acta Geographica Sinica, 2021, 76(9): 2203-2223.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
拓宇. 可移动式土壤风蚀风洞的设计与应用[D]. 西安: 陕西师范大学, 2021.
Tuo Yu. Design and application of a mobile wind tunnel for soil wind erosion. Xi’an: Shaanxi Normal University, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
白子怡, 董治宝, 肖锋军, 等. 基于野外移动风洞实验的沙打旺植被空气动力学特征研究[J]. 中国沙漠, 2024, 44(3): 1-8.
Bai Ziyi, Dong Zhibao, Xiao fengjun et al. Aerodynamic characteristics of Astragalus adsurgens vegetation based on mobile wind tunnel experiment. Journal of Desert Research, 2024, 44(3): 1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
李超. 土壤根系含量对风蚀影响的风洞模拟研究[D]. 西安: 陕西师范大学, 2016.
Li Chao. Wind tunnel simulation study on the impact of soil root content on wind erosion. Xi’an: Shaanxi Normal University, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
李刚, 韩杰, 王帆. 风洞变频调速系统对热线风速仪的影响及解决方法研究[J]. 测控技术, 2022, 41(11): 78-83.
Li Gang, Han Jie, Wang Fan. Influence and resolution of variable frequency speed regulation system of wind tunnel on hot-wire anemometer. Measurement & Control Technology, 2022, 41(11): 78-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
杨文斌, 杨红艳, 卢琦, 等. 低覆盖度灌木群丛的水平配置格局与固沙效果的风洞试验[J]. 生态学报, 2008, 28(7): 2998-3007.
Yang Wenbin, Yang Hongyan, Lu Qi et al. Wind tunnel experiment on sand-fixation effects of sparse shrub communities varying in spatial arrangement. Acta Ecological Sinica, 2008, 28(7): 2998-3007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
徐高兴, 徐先英, 王立, 等. 梭梭不同密度与配置固沙效果风洞模拟试验[J]. 干旱区资源与环境, 2019, 33(9): 189-195.
Xu Gaoxing, Xu Xianying, Wang Li et al. Sand-fix effects of Haloxylon ammodendron forests under the different densities and patterns under wind tunnel test. Journal of Arid Land Resources and Environment, 2019, 33(9): 189-195.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
Kinugasa T, Sagayama T, Gantsetseg B et al. Effect of simulated grazing on sediment trapping by single plants: A wind-tunnel experiment with two grassland species in Mongolia[J]. Catena, 2021, 202: 105262.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
Abulitipu A, Reiji K, Yoshinori K. Effect of flexible and rigid roughness elements on aeolian sand transport[J]. Arid Land Research and Management, 2017, 31(2): 111-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
Liu J, Kimura R, Miyawaki M et al. Effects of plants with different shapes and coverage on the blown-sand flux and roughness length examined by wind tunnel experiments[J]. Catena, 2021, 197: 104976.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |