无机材料学报 ›› 2024, Vol. 39 ›› Issue (7): 810-818.DOI: 10.15541/jim20230590 CSTR: 32189.14.10.15541/jim20230590
施桐1,2(), 甘乔炜2, 刘东2, 张莹2, 冯浩2(
), 李强1,2(
)
收稿日期:
2023-12-21
修回日期:
2024-01-30
出版日期:
2024-07-20
网络出版日期:
2024-02-26
通讯作者:
冯 浩, 副教授. E-mail: fenghao@njust.edu.cn;作者简介:
施 桐(1997-), 男, 博士研究生. E-mail: shitong@stu.xjtu.edu.cn
基金资助:
SHI Tong1,2(), GAN Qiaowei2, LIU Dong2, ZHANG Ying2, FENG Hao2(
), LI Qiang1,2(
)
Received:
2023-12-21
Revised:
2024-01-30
Published:
2024-07-20
Online:
2024-02-26
Contact:
FENG Hao, associate professor. E-mail: fenghao@njust.edu.cn;About author:
SHI Tong (1997-), male, PhD candidate. E-mail: shitong@stu.xjtu.edu.cn
Supported by:
摘要:
利用电化学方法将CO2转化为高值化学品是实现碳中和目标的一条有效途径。制备高性能电极是实现CO2高效转化的关键一环。常规喷涂法所制电极中催化层与集流体间的不良接触会严重影响电催化活性以及稳定性。为此, 本研究结合电化学沉积和离子置换反应法, 构建了一种原位生长的Bi@Cu纳米树(Bi@Cu NTs)自支撑电极。自支撑纳米树结构在降低界面电阻、确保空间结构稳定的同时, 为反应提供了丰富的活性位点和发达的孔隙结构, 进而实现CO2分子、电解液离子以及电子的协同传输, 并进一步促进电化学CO2转化。实验结果表明, Bi@Cu NTs电极在电化学活性和长期运行稳定性方面表现出色。在-1.4~-0.8 V (vs. RHE)的宽工作电位窗口范围内, 甲酸选择性均超过90%; 在-1.2 V的工作电位下, 该电极同时实现了高达97.9%的甲酸选择性和170.6 mA·cm-2的电流密度。此外, 该电极在-1.0 V下经过50 h持续电解, 获得了超过90%的平均甲酸选择性及大于110 mA·cm-2的平均电流密度, 且性能未见明显衰减, 稳定性优异。
中图分类号:
施桐, 甘乔炜, 刘东, 张莹, 冯浩, 李强. 自支撑Bi@Cu纳米树电极高效电化学还原CO2制甲酸[J]. 无机材料学报, 2024, 39(7): 810-818.
SHI Tong, GAN Qiaowei, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Boost Electrochemical Reduction of CO2 to Formate Using a Self-supporting Bi@Cu Nanotree Electrode[J]. Journal of Inorganic Materials, 2024, 39(7): 810-818.
图S1 (a)用于电化学CO2RR测试的流动池结构; (b)装配后的流动式反应池; (c)测试系统示意图
Fig. S1 (a) Flow-cell structure for electrochemical CO2 RR measurement; (b) Assembled flow-cell; (c) Schematic of the test system
图2 形貌表征与元素分布
Fig. 2 Morphology and element distribution (a-d) SEM images of (a, b) Cu NDs electrode and (c, d) Bi@Cu NTs electrode; (e1-e4) Regional EDS mapping results of nanotree structure
图3 晶相特征与表面化学态
Fig. 3 Crystal characteristics and surface chemical states (a) XRD patterns of blank carbon paper and Bi@Cu NTs electrode; (b) HRTEM image, high-resolution (c) Bi4f and (d) O1s XPS spectra of Bi@Cu NTs electrode
图4 电化学活性面积与交流阻抗谱
Fig. 4 ECSA and AC impedance spectra (a, b) CV curves of (a) Cu NDs and (b) Bi@Cu NTs electrodes; (c) Comparison of Cdl of different electrodes; (d) Nyquist plots and corresponding fitting curves of commercial Bi nanopowder, Cu NDs and Bi@Cu NTs electrodes with inset showing equivalent circuit Colorful figures are available on website
Electrode | RΩ/Ω | Rct/Ω |
---|---|---|
Cu NDs | 2.11 | 9.95 |
Bi@Cu NTs | 1.83 | 2.28 |
Commercial Bi nanopowder | 2.92 | 23.54 |
表S1 不同制备电极的EIS拟合结果
Table S1 EIS fitting results of different prepared electrodes
Electrode | RΩ/Ω | Rct/Ω |
---|---|---|
Cu NDs | 2.11 | 9.95 |
Bi@Cu NTs | 1.83 | 2.28 |
Commercial Bi nanopowder | 2.92 | 23.54 |
图5 CO2RR性能对比
Fig. 5 CO2RR performance comparison (a, c) I-t curves and (b, d) Faraday efficiency distributions with corresponding average current density of (a, b) commercial Bi nanopowder electrode and (c, d) Bi@Cu NTs electrode; (e) Comparison of distributions of FEFormate and JFormate of different electrodes; Colorful figures are available on website
图6 Cu NDs以及Bi@Cu NTs电极在不同电位下的HER(左)与CO2RR活性(右)分布
Fig. 6 Activity distributions of hydrogen evolution (left) and CO2 reduction reaction (right) of Cu NDs and Bi@Cu NTs electrodes at different potentials Colorful figures is available on website
Catalyst | Electrolyte | Potential/ V (vs. RHE) | Current density/ (mA·cm-2) | FEFormate/% | Stability test | Ref. |
---|---|---|---|---|---|---|
Bi19Br3S27 | 1 mol·L-1 KOH | -1.0 | ~94 | ~82 | 20 h (~10 mA·cm-2 with FEFormate of 97% in H-cell) | [S1] |
-1.2 | 150 | ~90 | ||||
SOR Bi@C NPs | 1 mol·L-1 KOH | -1.12 | 100 | 90 | 18 h (~12 mA·cm-2 with FEFormate of 92% in H-cell) | [S2] |
Self-supporting Bi-Sb nanoleaf | 1 mol·L-1 KOH | -1.2 | 160 | 81.3 | 25 h (160 mA·cm-2 with FEFormate of 81.3% in flow-cell) | [S3] |
MIL-68(In)-NH2 | 1 mol·L-1 KOH | -1.1 | 114 | 94.4 | 24 h (at -1.1 V (vs. RHE), FEFormate over 90% in flow-cell) | [S4] |
MOD-BiIn | 1 mol·L-1 KOH | -1.4 | ~142 | ~96 | 12 h (100 mA·cm-2 with FEFormate of ~95% in flow-cell) | [S5] |
Bi2O2SO4 | 1 mol·L-1 KOH | -1.2 | 163.5 | 97.2 | 12 h (91.5 mA·cm-2 with FEFormate of ~96% in flow-cell) | [S6] |
BOCR | 1 mol·L-1 KOH | -1.1 | 168.9 | 93.55 | 16 h (at -0.9 V (vs. RHE), FEFormate over 90% in flow-cell) | [S7] |
SnO2/PANI | 1 mol·L-1 KHCO3 | -1.2 | 23.5 | 72 | 6 h (at -1.2 V (vs. RHE), FEFormate of ~ 70% in flow-cell) | [S8] |
Bi@NCFs | 0.5 mol·L-1 KHCO3 | -1.0 | 116 | 91 | 48 h (~12 mA·cm-2 with FEFormate over 81.3% in H-cell) | [S9] |
Self-supporting Bi@Cu NTs | 1 mol·L-1 KOH | -1.2 | 170.6 | 97.9 | 50 h (~110 mA·cm-2 with FEFormate over 90% in flow-cell) | This work |
-1.4 | 242.2 | 96.7 |
表S2 Bi@Cu NTs电极与近期研究报道的在相同/相似测试条件下电化学还原CO2制甲酸性能比较
Table S2 Comparison of the electrochemical reduction of CO2 to formate performance on Bi@Cu NTs electrode with recent reports under the same/similar conditions
Catalyst | Electrolyte | Potential/ V (vs. RHE) | Current density/ (mA·cm-2) | FEFormate/% | Stability test | Ref. |
---|---|---|---|---|---|---|
Bi19Br3S27 | 1 mol·L-1 KOH | -1.0 | ~94 | ~82 | 20 h (~10 mA·cm-2 with FEFormate of 97% in H-cell) | [S1] |
-1.2 | 150 | ~90 | ||||
SOR Bi@C NPs | 1 mol·L-1 KOH | -1.12 | 100 | 90 | 18 h (~12 mA·cm-2 with FEFormate of 92% in H-cell) | [S2] |
Self-supporting Bi-Sb nanoleaf | 1 mol·L-1 KOH | -1.2 | 160 | 81.3 | 25 h (160 mA·cm-2 with FEFormate of 81.3% in flow-cell) | [S3] |
MIL-68(In)-NH2 | 1 mol·L-1 KOH | -1.1 | 114 | 94.4 | 24 h (at -1.1 V (vs. RHE), FEFormate over 90% in flow-cell) | [S4] |
MOD-BiIn | 1 mol·L-1 KOH | -1.4 | ~142 | ~96 | 12 h (100 mA·cm-2 with FEFormate of ~95% in flow-cell) | [S5] |
Bi2O2SO4 | 1 mol·L-1 KOH | -1.2 | 163.5 | 97.2 | 12 h (91.5 mA·cm-2 with FEFormate of ~96% in flow-cell) | [S6] |
BOCR | 1 mol·L-1 KOH | -1.1 | 168.9 | 93.55 | 16 h (at -0.9 V (vs. RHE), FEFormate over 90% in flow-cell) | [S7] |
SnO2/PANI | 1 mol·L-1 KHCO3 | -1.2 | 23.5 | 72 | 6 h (at -1.2 V (vs. RHE), FEFormate of ~ 70% in flow-cell) | [S8] |
Bi@NCFs | 0.5 mol·L-1 KHCO3 | -1.0 | 116 | 91 | 48 h (~12 mA·cm-2 with FEFormate over 81.3% in H-cell) | [S9] |
Self-supporting Bi@Cu NTs | 1 mol·L-1 KOH | -1.2 | 170.6 | 97.9 | 50 h (~110 mA·cm-2 with FEFormate over 90% in flow-cell) | This work |
-1.4 | 242.2 | 96.7 |
图8 本研究与文献报道的CO2转化制甲酸相关工作性能对比[24⇓⇓⇓⇓⇓⇓-31]
Fig. 8 Comparison of this work with reported performances of CO2-to-formate[23⇓⇓⇓⇓⇓⇓⇓-31] (a) FEFormate; (b) Current density
图9 Bi@Cu NTs电极在恒电位-1.0 V下运行不同时间(0, 3, 45以及90 s)的原位拉曼光谱图
Fig. 9 In-situ Raman spectra of Bi@Cu NTs electrode at constant potential of -1.0 V with different run time (0, 3, 45 and 90 s) OCP: Open circuit potential
[1] | ZHANG K, GAO Q, XU C, et al. Current dilemma in photocatalytic CO2 reduction: real solar fuel production or false positive outcomings? Carbon Neutrality, 2022, 1(1): 10. |
[2] | FANG J, WANG D, XU H, et al. Unleashing solar energy's full potential: synergetic thermo-photo catalysis for enhanced hydrogen production with metal-free carbon nitrides. Energy Conversion and Management, 2024, 300: 117995. |
[3] | FANG W, LIU D, ZHANG Y, et al. Improved photoelectrochemical performance by polyoxometalate-modified CuBi2O4/Mg-CuBi2O4 homojunction photocathode. Acta Physico Chimica Sinica, 2023, 40(2): 2304006. |
[4] | WANG G, CHEN J, DING Y, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50(8): 4993. |
[5] | SHI T, LIU D, FENG H, et al. Evolution of triple-phase interface for enhanced electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 431: 134348. |
[6] | HAN N, DING P, HE L, et al. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Advanced Energy Materials, 2019, 10(11): 1902338. |
[7] | KIBRIA M G, EDWARDS J P, GABARDO C M, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Advanced Materials, 2019, 31(31): e1807166. |
[8] | DING P, ZHAO H, LI T, et al. Metal-based electrocatalytic conversion of CO2 to formic acid/formate. Journal of Materials Chemistry A, 2020, 8(42): 21947. |
[9] | SUI P F, GAO M R, LIU S, et al. Carbon dioxide valorization via formate electrosynthesis in a wide potential window. Advanced Functional Materials, 2022, 32(32): 2203794. |
[10] | ZHANG B, WU Y, HAI P, et al. Rational design of bismuth- based catalysts for electrochemical CO2 reduction. Chinese Journal of Catalysis, 2022, 43(12): 3062. |
[11] | NIU Z Z, GAO F Y, ZHANG X L, et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. Journal of the American Chemical Society, 2021, 143(21): 8011. |
[12] | SHI T, FENG H, LIU D, et al. High-performance microfluidic electrochemical reactor for efficient hydrogen evolution. Applied Energy, 2022, 325: 119887. |
[13] | WAKERLEY D, LAMAISON S, WICKS J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nature Energy, 2022, 7(2): 130. |
[14] | NGUYEN T N, DINH C T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chemical Society Reviews, 2020, 49(21): 7488. |
[15] | DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360(6390): 783. |
[16] | RABIEE H, GE L, ZHANG X, et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy & Environmental Science, 2021, 14(4): 1959. |
[17] | KIM J, KIM H, HAN G H, et al. Electrodeposition: an efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. Exploration, 2022, 2(3): 20210077. |
[18] | WANG J, ZANG N, XUAN C, et al. Self-supporting electrodes for gas-involved key energy reactions. Advanced Functional Materials, 2021, 31(43): 2104620. |
[19] | ZHANG J, LUO W, ZÜTTEL A. Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction. Journal of Materials Chemistry A, 2019, 7(46): 26285. |
[20] | SHI T, LIU D, LIU N, et al. Triple-phase interface engineered hierarchical porous electrode for CO2 electroreduction to formate. Advanced Science, 2022, 9(30): 2204472. |
[21] | ROBINSON I K, TWEET D J. Surface X-ray diffraction. Reports on Progress in Physics, 1992, 55(5): 599. |
[22] | DUTTA A, ZELOCUALTECATL MONTIEL I, KIRAN K, et al. A tandem (Bi2O3 → Bimet) catalyst for highly efficient ec-CO2 conversion into formate: operando raman spectroscopic evidence for a reaction pathway change. ACS Catalysis, 2021, 11(9): 4988. |
[23] | SUI P F, XU C, ZHU M N, et al. Interface-induced electrocatalytic enhancement of CO2-to-formate conversion on heterostructured bismuth-based catalysts. Small, 2021, 18(1): 2105682. |
[24] | MA X, WANG Q, WANG M, et al. Bi19Br3S27 nanorods for formate production from CO2 electroreduction with high efficiency and selectivity. Chemical Engineering Journal, 2023, 474: 145711. |
[25] | LIU S, FAN Y, WANG Y, et al. Surface-oxygen-rich Bi@C nanoparticles for high-efficiency electroreduction of CO2 to formate. Nano Letters, 2022, 22(22): 9107. |
[26] | YANG C, HU Y, LI S, et al. Self-supporting Bi-Sb bimetallic nanoleaf for electrochemical synthesis of formate by highly selective CO2 reduction. ACS Applied Materials & Interfaces, 2023, 15(5): 6942. |
[27] | WANG Z, ZHOU Y, XIA C, et al. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst. Angewandte Chemie- International Edition, 2021, 60(35): 19107. |
[28] | YE R, ZHU J, TONG Y, et al. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate. Journal of Energy Chemistry, 2023, 83: 180. |
[29] | YE R, TONG Y, FENG D, et al. A topological chemical transition strategy of bismuth-based materials for high-efficiency electrocatalytic carbon dioxide conversion to formate. Journal of Materials Chemistry A, 2023, 11(9): 4691. |
[30] | ZHAO S, QIN Y, WANG X, et al. Anion exchange facilitates the in situ construction of Bi/Bi-O interfaces for enhanced electrochemical CO2-to-formate conversion over a wide potential window. Small, 2023, 19(43): 2302878. |
[31] | SASSONE D, ZENG J, FONTANA M, et al. Highly dispersed few-nanometer chlorine-doped SnO2 catalyst embedded in a polyaniline matrix for stable HCOO- production in a flow cell. ACS Applied Materials & Interfaces, 2022, 14(37): 42144. |
[32] | LI H, AO K, LIU J, et al. Structural construction of Bi-anchored honeycomb N-doped porous carbon catalyst for efficient CO2 conversion. Chemical Engineering Journal, 2023, 464: 142672. |
[33] | MONTIEL I Z, DUTTA A, KIRAN K, et al. CO2 conversion at high current densities: stabilization of Bi(III)- containing electrocatalysts under CO2 gas flow conditions. ACS Catalysis, 2022, 12(17): 10872. |
[34] | CHEN X, CHEN J, ALGHORAIBI N M, et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nature Catalysis, 2020, 4(1): 20. |
[35] | JIANG S, KLINGAN K, PASQUINI C, et al. New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. Journal of Chemical Physics, 2019, 150(4): 041718. |
[36] | ZHANG B, CHANG Y, WU Y, et al. Regulating *OCHO intermediate as rate-determining step of defective oxynitride nanosheets enabling robust CO2 electroreduction. Advanced Energy Materials, 2022, 12(27): 2200321. |
[37] | SHAN W, LIU R, ZHAO H, et al. In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction. ACS Nano, 2020, 14(9): 11363. |
[38] | ARISNABARRETA N, PAREDES-OLIVERA P, COMETTO F P, et al. Growth of layered copper-alkanethiolate frameworks from thin anodic copper oxide films. Journal of Physical Chemistry C, 2019, 123(28): 17283. |
[1] | 王虹力, 王男, 王丽莹, 宋二红, 赵占奎. 功能化石墨烯担载型AuPd纳米催化剂增强甲酸制氢反应[J]. 无机材料学报, 2022, 37(5): 547-553. |
[2] | 郭李娜, 何雪冰, 吕琳, 吴丹, 原弘. 调控CuO表面性质选择性电催化还原CO2制HCOOH[J]. 无机材料学报, 2022, 37(1): 29-37. |
[3] | 郭小炜, 李玉妍, 陈南春, 王秀丽, 解庆林. 负载二甲酸钾缓释抗菌微球的构建[J]. 无机材料学报, 2021, 36(2): 181-187. |
[4] | 肖剑飞, 乃学瑛, 苟生莲, 叶俊伟, 董亚萍, 李武. 邻苯二甲酸氢钾在制备碱式硫酸镁纳米线过程中的机理研究[J]. 无机材料学报, 2019, 34(11): 1181-1186. |
[5] | 黄晓灵, 林 舟, 练昕怡, 张晓凤, 林 深. Pd/PMo12-GN复合膜的制备及其对甲酸氧化的电催化性能[J]. 无机材料学报, 2014, 29(7): 722-728. |
[6] | 江红,冯兰英,朱红,郭志军,张新卫. 掺杂Fe元素对Pd/C催化剂性能的影响[J]. 无机材料学报, 2008, 23(4): 847-850. |
[7] | 张耀君,张 莉. 复合材料CdS/Al-HMS的制备及可见光催化降解污染物制氢活性研究[J]. 无机材料学报, 2008, 23(1): 66-70. |
[8] | 王清叶,王东利,任敏,孙聚堂. 掺杂三价铽离子的邻苯二甲酸锌发光材料[J]. 无机材料学报, 1998, 13(2): 152-156. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 486
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 288
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||