高级检索+

毛竹谷胱甘肽过氧化物酶基因分子特征及其表达模式分析

单雪萌, 杨克彬, 李广柱, 王新悦, 李英, 高志民

单雪萌, 杨克彬, 李广柱, 王新悦, 李英, 高志民. 毛竹谷胱甘肽过氧化物酶基因分子特征及其表达模式分析[J]. 植物科学学报, 2022, 40(3): 344-354. DOI: 10.11913/PSJ.2095-0837.2022.30344
引用本文: 单雪萌, 杨克彬, 李广柱, 王新悦, 李英, 高志民. 毛竹谷胱甘肽过氧化物酶基因分子特征及其表达模式分析[J]. 植物科学学报, 2022, 40(3): 344-354. DOI: 10.11913/PSJ.2095-0837.2022.30344
Shan Xue-Meng, Yang Ke-Bin, Li Guang-Zhu, Wang Xin-Yue, Li Ying, Gao Zhi-Min. Molecular characteristics and expression pattern analysis of glutathione peroxidase genes in Phyllostachys edulis (Carriere) J. Houzeau[J]. Plant Science Journal, 2022, 40(3): 344-354. DOI: 10.11913/PSJ.2095-0837.2022.30344
Citation: Shan Xue-Meng, Yang Ke-Bin, Li Guang-Zhu, Wang Xin-Yue, Li Ying, Gao Zhi-Min. Molecular characteristics and expression pattern analysis of glutathione peroxidase genes in Phyllostachys edulis (Carriere) J. Houzeau[J]. Plant Science Journal, 2022, 40(3): 344-354. DOI: 10.11913/PSJ.2095-0837.2022.30344
单雪萌, 杨克彬, 李广柱, 王新悦, 李英, 高志民. 毛竹谷胱甘肽过氧化物酶基因分子特征及其表达模式分析[J]. 植物科学学报, 2022, 40(3): 344-354. CSTR: 32231.14.PSJ.2095-0837.2022.30344
引用本文: 单雪萌, 杨克彬, 李广柱, 王新悦, 李英, 高志民. 毛竹谷胱甘肽过氧化物酶基因分子特征及其表达模式分析[J]. 植物科学学报, 2022, 40(3): 344-354. CSTR: 32231.14.PSJ.2095-0837.2022.30344
Shan Xue-Meng, Yang Ke-Bin, Li Guang-Zhu, Wang Xin-Yue, Li Ying, Gao Zhi-Min. Molecular characteristics and expression pattern analysis of glutathione peroxidase genes in Phyllostachys edulis (Carriere) J. Houzeau[J]. Plant Science Journal, 2022, 40(3): 344-354. CSTR: 32231.14.PSJ.2095-0837.2022.30344
Citation: Shan Xue-Meng, Yang Ke-Bin, Li Guang-Zhu, Wang Xin-Yue, Li Ying, Gao Zhi-Min. Molecular characteristics and expression pattern analysis of glutathione peroxidase genes in Phyllostachys edulis (Carriere) J. Houzeau[J]. Plant Science Journal, 2022, 40(3): 344-354. CSTR: 32231.14.PSJ.2095-0837.2022.30344

毛竹谷胱甘肽过氧化物酶基因分子特征及其表达模式分析

基金项目: 

国际竹藤中心基本科研业务费专项(1632019025);国家重点研发计划(2021YFD2200502)。

详细信息
    作者简介:

    单雪萌(1995-),女,硕士研究生,研究方向为竹藤花卉分子育种(E-mail:shanxuemeng1124@163.com)。

    通讯作者:

    高志民,E-mail:gaozhimin@icbr.ac.cn

  • 中图分类号: Q943.2

Molecular characteristics and expression pattern analysis of glutathione peroxidase genes in Phyllostachys edulis (Carriere) J. Houzeau

Funds: 

This work was supported by grants from the Fundamental Scientific Research on Professional Work Supported by the International Center for Bamboo and Rattan (1632019025) and National Key R&D Project of China (2021YFD2200502).

  • 摘要: 利用生物信息学以及分子生物学方法对毛竹(Phyllostachys edulis (Carriere) J. Houzeau)谷胱甘肽过氧化物酶基因(GPX)的分子特征以及表达模式进行分析。结果显示,在毛竹中共鉴定出9个GPX家族成员基因(PeGPX1-PeGPX9),均具有6个外显子以及5个内含子,PeGPXs编码蛋白的长度为168~235 aa,相对分子量在18.41~25.54 kD,等电点范围为5.88~9.48。亚细胞定位预测结果发现,除PeGPX5定位在线粒体上,其他PeGPXs都定位在叶绿体上。在PeGPXs启动子中含有多种与胁迫和激素相关的顺式作用元件。qRT-PCR分析结果表明,强光、低温、GA3、NAA和MeJA处理均可引起毛竹叶片中PeGPXs表达量发生明显变化。
    Abstract: The molecular characteristics and expression patterns of glutathione peroxidase genes (GPX) in moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) were analyzed using bioinformatics and molecular biology. A total of nine GPX genes were identified from the genome of moso bamboo (PeGPX1-PeGPX9), which all contained six exons and five introns. The lengths of proteins encoded by PeGPXs ranged from 168 to 235 aa, with relative molecular weights of 18.41 to 25.54 kD and isoelectric points of 5.88 to 9.48. Subcellular localization analysis predicted that all PeGPXs were localized on the chloroplast, except for PeGPX5 on mitochondria. A variety of stress and hormone-related cis-acting elements were found in the promoters of PeGPXs. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that the expression levels of PeGPXs in the leaves of moso bamboo were distinctly affected by high light, low temperature, GA3, NAA, and MeJA treatments.
  • [1]

    Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination[J]. Plant J, 2017, 90(5):856-867.

    [2] 肖蓉,罗慧珍,张小娟,邓舒,张春芬,等.干旱和盐胁迫条件下枣树谷胱甘肽过氧化物酶基因(ZjGPX)的差异表达及功能分析[J].中国农业科学, 2015, 48(14):2806-2817.

    Xiao R, Luo HZ, Zhang XJ, Deng S, Zhang CF, et al. Differential expression and functional analysis of glutathione peroxidase gene from jujube (ZjGPX) under drought and salt stresses[J]. Scientia Agricultura Sinica, 2015, 48(14):2806-2817.

    [3]

    Chang CCC, Slesak I, Jorda L, Sotnikov A, Melzer M, et al. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses[J]. Plant Physiol, 2009, 150(2):670-683.

    [4]

    Bela K, Horvath E, Galle A, Szabados L, Tari I, et al. Plant glutathione peroxidases:emerging role of the antio-xidant enzymes in plant development and stress responses[J]. J Plant Physiol, 2015, 176:192-201.

    [5]

    Passaia G, Margis-Pinheiro M. Glutathione peroxidases as redox sensor proteins in plant cells[J]. Plant Sci, 2015, 234:22-26.

    [6]

    Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, et al. Diversity of glutathione peroxidases[J]. Method Enzymol, 1995, 252:38-53.

    [7]

    Criqui MC, Jamet E, Parmentier Y, Marbach J, Durr A, Fleck J. Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases[J]. Plant Mol Biol, 1992, 18(3):623-627.

    [8]

    Sugimoto M, Sakamoto W. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress[J]. Genes Genet Syst, 1997, 72(5):311-316.

    [9]

    Li WJ, Feng H, Fan JH, Zhang RQ, Zhao NM, et al. Molecular cloning and expression of a phospholipid hydrope-roxide glutathione peroxidase homolog in Oryza sativa[J]. Biochim Biophys Acta, 2000, 1493(1-2):225-230.

    [10]

    Passaia G, Fonini LS, Caverzan A, Jardim-Messede D, Christoff AP, et al. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice[J]. Plant Sci, 2013, 208:93-101.

    [11]

    Passaia G, Caverzan A, Fonini LS, Carvalho F, Silveira J, et al. Chloroplastic and mitochondrial GPX genes play a critical role in rice development[J]. Biol Plantarum, 2014, 58(2):375-78.

    [12]

    Diao Y, Xu HX, Li GL, Yu AQ, Yu X, Hu WL, et al. Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice[J]. Mol Biol Rep, 2014, 41(8):4919-4927.

    [13]

    Zhai CZ, Zhao L, Yin LJ, Chen M, Wang QY, et al. Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and H2O2 tolerances in Arabidopsis[J]. PLoS One, 2013, 8(10):e73989.

    [14] 周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报, 2006, 28(6):51-55.

    Zhou GM, Wu JS, Jiang PK. Effects of different management models on carbon storage in Phyllostachys pubescens forests[J]. Journal of Beijing Forestry University, 2006, 28(6):51-55.

    [15]

    Jiang ZH, Peng ZH, Gao ZM, Liu C, Yang CH. Characterization of different isoforms of the light-harvesting chlorophyll a/b complexes of photosystemⅡ[STXFZ] in bamboo[J]. Photosynthetica, 2012, 50(1):129-138.

    [16] 彭九生,程平,曾庆南.江西毛竹林冰压灾害后恢复重建技术措施与建议[J].世界竹藤通讯, 2008, 6(2):34-36.

    Peng JS, Cheng P, Zeng QN. Technology and suggestion on restoration and reconstruction of Phyllostachy pubescens stand damaged by freezing hazard[J]. World Bamboo and Rattan, 2008, 6(2):34-36.

    [17] 李龙有,张培新.干旱和高温危害毛竹竹笋-幼竹生长初报[J].竹子学报, 1987, 6(4):55-59.

    Li LY, Zhang PX. First report on high temperature and drought damage shoots and young bamboos (Ph. pubescens)[J]. Journal of Bamboo Research, 1987, 6(4):55-59.

    [18] 金爱武.现代毛竹培育技术及其传播:问题和方法[M].北京:中国农业出版社, 2006, 17-21.
    [19]

    Zhou Y, Hu LF, Ye SF, Jiang LW, Liu SQ. Genome-wide identification of glutathione peroxidase (GPX) gene family and their response to abiotic stress in cucumber[J]. 3 Biotech, 2018, 8(3):159.

    [20]

    Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.

    [21]

    Zhao HS, Gao ZM, Wang L, Wang JL, Wang SB, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience, 2018, 7(10):giy115.

    [22]

    Chou KC, Shen HB. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6):e11335.

    [23]

    Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.

    [24]

    Gao ZM, Li XP, Li LB, Peng ZH. An effective method for total RNA isolation from bamboo[J]. Chinese Forestry Science and Technology, 2006, 5(3):52-54.

    [25]

    Fan CJ, Ma JM, Guo QR, Li XT, Wang H, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2):e56573.

    [26]

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J]. Methods, 2001, 25(4):402-408.

    [27]

    Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, et al. The glutathione peroxidase gene family of Lotus japonicus:characterization of genomic clones, expression analyses and immunolocalization in legumes[J]. New Phytol, 2009, 181(1):103-114.

    [28]

    Chen MY, Li K, Li HP, Song CP, Miao YC. The gluta-thione peroxidase gene family in Gossypium hirsutum:genome-wide identification, classification, gene expression and functional analysis[J]. Sci Rep, 2017, 7:44743.

    [29]

    Cao YP, Han YH, Jin Q, Lin Y, Cai YP. Comparative genomic analysis of the GRF genes in Chinese pear (Pyrus bretschneideri Rehd), poplar (Populous), grape (Vitis vinifera), Arabidopsis and rice (Oryza sativa)[J]. Front Plant Sci, 2016, 7:1750.

    [30]

    Milla MAR, Maurer A, Huete AR, Gustafson P. Gluta-thione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways[J]. Plant J, 2003, 36(5):602-615.

    [31]

    Islam T, Manna M, Kaul T, Pandey S, Reddy CS, et al. Genome-wide dissection of Arabidopsis and rice for the identification and expression analysis of glutathione peroxidases reveals their stress-specific and overlapping response patterns[J]. Plant Mol Biol Rep, 2015, 33:1413-1427.

    [32] 孙晓波,陈佩珍,吴晓刚,吴帆,季孔庶.马尾松PmAOX基因克隆与不同逆境胁迫表达分析[J].南京林业大学学报(自然科学版), 2020, 44(4):70-78.

    Sun XB, Chen PZ, Wu XG, Wu F, Ji KS. The cloning and expression analysis of PmAOX gene from Pinus masso-niana under different stress[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(4):70-78.

    [33]

    Fu JY. Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses[J]. Bot Stud, 2014, 55(1):7.

    [34]

    Gao F, Chen J, Ma TT, Li HY, Wang N, et al. The glutathione peroxidase gene family in Thellungiella salsuginea:genome-wide identification, classification, and gene and protein expression analysis under stress conditions[J]. Int J Mol Sci, 2014, 15(2):3319-3335.

    [35]

    Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, et al. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol[J]. Plant J, 2004, 37(1):21-33.

    [36]

    Dahan YG, Yaniv Z, Zilinskas BA, Hayyim GB. Salt and oxidative stress:similar and specific responses and their relation to salt tolerance in Citrus[J]. Planta, 1997, 203(4):460-469.

    [37]

    Chen SR, Vaghchhipawala Z, Li W, Asard H, Dickman MB. Tomato phospholipid hydroperoxide glutathione pe-roxidase inhibits cell death induced by Bax and oxidative stresses in yeast and plants[J]. Plant Physiol, 2004, 135(3):1630-1641.

    [38]

    Faltin Z, Holland D, Velcheva M, Tsapovetsky M, Drevet PR, et al. Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation[J]. Plant Cell Physiol, 2010, 51(7):1151-1162.

    [39]

    Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, et al. The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol[J]. Plant Cell Physiol, 2012, 53(9):1596-1606.

  • 期刊类型引用(1)

    1. 苏永峰,刘俐君,马红喜,袁引燕,张德恩,鲁晓燕. 基于转录组测序筛选新疆野苹果组培苗应答冻害谷胱甘肽代谢相关的基因. 果树学报. 2023(05): 829-840 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  314
  • HTML全文浏览量:  6
  • PDF下载量:  216
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-02-01
  • 网络出版日期:  2022-10-31
  • 发布日期:  2022-06-27

目录

    /

    返回文章
    返回