Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
Teame G KEBEDE1,2,*(), Emiru BIRHANE1,3, Kiros-Meles AYIMUT4, Yemane G EGZIABHER4
1Department of Land Resource Management and Environmental Protection, College of Dryland Agriculture and Natural Resource, Mekelle University, Mekelle 231, Ethiopia 2Department of Animal Production and Technology, College of Agriculture and Environmental Science, Adigrat University, Adigrat 50, Ethiopia 3Institute of Climate and Society, Mekelle University, Mekelle 231, Ethiopia 4Department of Dryland Crop and Horticultural Science, College of Dryland Agriculture and Natural Resource, Mekelle University, Mekelle 231, Ethiopia
Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%-25% SWA (T1), 25%-50% SWA (T2), 50%-75% SWA (T3), and 75%-100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.
Teame G KEBEDE, Emiru BIRHANE, Kiros-Meles AYIMUT, Yemane G EGZIABHER. Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels. Journal of Arid Land, 2023, 15(8): 975-988.
Table 1 Mean fresh cladode weight, height, breadth, thickness, number of areoles, and spines per cladode of O. ficus-indica mother plants
Fig. 1Effects of O. ficus-indica type (spiny (a) or spineless (b)), arbuscular mycorrhizal fungi (absent (c) or present (d)), and soil water available (SWA) on the height of O. ficus-indica cladodes after 18 months of growth in the greenhouse. T1, 0%-25% SWA; T2, 25%-50% SWA; T3, 50%-75% SWA; T4, 75%-100% SWA. Bars are standard errors.
Parameter
Type
AMF
SWA
Type×AMF
Type×SWA
AMF×SWA
Type×AMF× SWA
F
P
F
P
F
P
F
P
F
P
F
P
F
P
Establish cladodes
0.572
0.451
0.006
0.936
3.235
0.025
0.507
0.478
0.264
0.768
0.508
0.603
0.244
0.912
Up-growing cladodes
0.089
0.766
0.064
0.801
103.553
0.000
18.262
0.000
21.940
0.000
18.291
0.000
8.192
0.000
Height
16.419
0.000
7.274
0.008
92.286
0.000
567.007
0.000
134.662
0.000
201.308
0.000
193.694
0.000
Breadth
27.280
0.000
9.937
0.002
31.964
0.000
29.045
0.000
7.117
0.001
55.666
0.000
118.953
0.000
Thickness
0.006
0.941
18.539
0.000
63.724
0.000
0.889
0.348
2.638
0.077
6.983
0.001
2.491
0.048
Areoles
9.107
0.003
3.034
0.084
13.333
0.000
0.030
0.863
3.079
0.051
13.757
0.000
5.655
0.000
Spines areole
1445.969
0.000
1.012
0.317
0.623
0.602
13.667
0.000
14.218
0.000
71.583
0.000
51.853
0.000
Total spine cladodes
864.609
0.000
1.764
0.187
1.064
0.368
5.858
0.017
13.316
0.000
33.127
0.000
19.709
0.000
Area
20.550
0.000
9.383
0.003
79.637
0.000
0.037
0.848
0.116
0.734
0.970
0.327
0.080
0.779
Biomass
4.286
0.041
6.737
0.011
283.564
0.000
583.038
0.000
641.902
0.000
596.762
0.000
243.113
0.000
Growth rate at 15 d
3.012
0.086
0.880
0.350
230.445
0.000
69.751
0.000
51.694
0.000
71.937
0.000
29.878
0.000
Growth rate at 30 d
11.700
0.001
1.666
0.200
172.523
0.000
303.051
0.000
166.322
0.000
139.648
0.000
112.233
0.000
Growth rate at 45 d
6.447
0.013
1.516
0.221
332.090
0.000
323.051
0.000
214.124
0.000
223.398
0.000
118.398
0.000
Growth rate at 60 d
3.735
0.056
0.941
0.334
432.003
0.000
64.105
0.000
65.707
0.000
37.848
0.000
25.453
0.000
Growth rate at 75 d
1.043
0.310
0.447
0.505
1091.426
0.000
278.154
0.000
271.614
0.000
185.975
0.000
98.690
0.000
Growth rate at 90 d
0.634
0.428
0.355
0.553
1484.897
0.000
318.049
0.000
328.463
0.000
236.695
0.000
122.449
0.000
Growth rate at 105 d
0.309
0.579
0.043
0.835
2350.277
0.000
423.336
0.000
418.416
0.000
305.089
0.000
147.558
0.000
Growth rate at 120 d
0.400
0.641
0.041
0.840
3000.697
0.000
560.374
0.000
541.501
0.000
414.367
0.000
195.538
0.000
Photosynthesis at day time
5.333
0.020
1.877
0.174
358.918
0.000
2.074
0.153
0.548
0.461
0.011
0.915
0.009
0.926
Photosynthesis at night time
10.303
0.002
9.872
0.002
147.497
0.000
0.364
0.548
0.046
0.830
0.892
0.347
3.298
0.072
Transpiration at day time
0.046
0.831
0.380
0.539
1444.785
0.000
0.203
0.654
1.698
0.196
0.182
0.671
0.128
0.721
Transpiration at night time
0.707
0.402
0.474
0.493
192.021
0.000
0.132
0.717
0.124
0.726
0.078
0.780
0.408
0.524
Stomatal conductance at day time
4.438
0.038
1.017
0.316
534.654
0.000
0.339
0.562
1.635
0.204
0.000
0.993
0.136
0.713
Stomatal conductance at night time
3.726
0.056
0.390
0.539
798.901
0.000
0.973
0.326
0.001
0.977
0.540
0.464
0.218
0.642
Water use efficiency at day time
6.700
0.011
4.054
0.047
97.201
0.000
1.121
0.292
9.660
0.002
8.930
0.004
1.996
0.161
Water use efficiency at night time
14.203
0.000
13.829
0.000
100.683
0.000
1.167
0.283
0.496
0.483
1.091
0.161
1.797
0.183
Table 2 Effects of O. ficus-indica type, arbuscular mycorrhizal fungi (AMF), soil water available (SWA), and their interaction on the morphological traits of daughter cladodes (n=108)
Factor
Treatment
Hyphal
Arbuscular
Vesicular
Type
Spiny (%)
66.67±1.00a
32.74±0.56a
29.93±0.63a
Spineless (%)
66.67±0.98a
33.94±0.60a
30.63±0.64a
F
0.000
0.355
0.306
P
1.000
0.671
0.806
SWA
T1 (%)
88.89±0.00a
45.37±0.45a
41.33±0.52a
T2 (%)
77.78±0.00b
40.87±0.36b
39.10±0.29b
T3 (%)
55.56±0.00c
27.25±0.27c
24.54±0.23c
T4 (%)
44.44±0.00d
19.88±0.21d
16.18±0.13d
F
5.341
1207.443
1346.818
P
0.000
0.000
0.000
Type×SWA
F
30.333
22.257
22.347
P
0.000
0.000
0.000
Table 3 Effects of O. ficus-indica type, soil water available (SWA), and their interaction on the root colonization
Fig. 2Effect of interaction of O. ficus-indica type (spiny or spineless), arbuscular mycorrhizal fungi (AMF; absent or present), and soil water available (SWA) on biomass (a), area (b), height (c), thickness (d), breadth (e), and number of areoles (f) of O. ficus-indica cladodes after 18 months of growth in the greenhouse. T1, 0%-25% SWA; T2, 25%-50% SWA; T3, 50%-75% SWA; T4, 75%-100% SWA. Bars are standard errors.
Fig. 3Effect of interaction of O. ficus-indica type (spiny or spineless), arbuscular mycorrhizal fungi (AMF; absent or present), and soil water available (SWA) on morphological traits both during night time (a, c, e, and g) and day time (b, d, f, and h) of O. ficus-indica cladodes after 18 months of growth in the greenhouse. PWUE, photosynthetic water use efficiency; T1, 0%-25% SWA; T2, 25%-50% SWA; T3, 50%-75% SWA; T4, 75%-100% SWA. Bars are standard errors.
Time
Photosynthesis (μmol/(cm2•s))
Transpiration (mmol/(H2O m2•s))
stomatal conductance (mmol/(m2•s))
Water use efficiency (μmol/mmol)
Day
0.123±0.01b
9.72±0.48b
7.34±0.33b
0.01±0.00b
Night
6.65±0.27a
11.71±0.14a
31.72±1.00a
0.63±0.02a
F
306.980
167.319
251.990
305.366
P
0.000
0.000
0.000
0.000
Table 4 Effect of time on physiological traits of O. ficus-indica daughter cladodes
[1]
Aiqun C, Main G, Shuangshuang W, et al. 2017. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. New Phytologist, 74: 80-88.
[2]
Alho L, Carvalho M, Brito I, et al. 2015. The effect of arbuscular mycorrhiza fungal propagules on the growth of subterranean clover (Trifolium subterraneum L.) under Mn toxicity in ex situ experiments. Soil Use and Management, 31(2): 337-344.
doi: 10.1111/sum.2015.31.issue-2
[3]
Andrade J L, Cervera J C, Graham E A. 2009. Microenvironments, water relations, and productivity of CAM plants. In: De la Barrera E, Smith W K. Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel. Mexico: Universidad Nacional Autónoma de México, 95-120.
[4]
Andrino A, Guggenberger G, Sauheitl L, et al. 2020. Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Journal of Biology and Fertility of Soils, 57: 47-64.
[5]
Astello-Garcia M G, Cervantes I, Nair V, et al. 2015. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. Journal of Food Composition and Analysis, 43: 119-130.
doi: 10.1016/j.jfca.2015.04.016
[6]
Auge R M, Toler H D, Saxton A M. 2016. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: A quantitative analysis of the literature using meta-regression. Frontiers in Plant Science, 7: 1084, doi: 10.3389/fpls.2016.01084.
doi: 10.3389/fpls.2016.01084
pmid: 27524989
[7]
Belay T, Gebreselassie M, Abadi T. 2011. Description of cactus pear (Opuntia ficus-indica (L.) Mill) cultivars from Tigray, northern Ethiopia. In: Research Report No. 1. Tigray Agricultural Research Institute, Mekelle, Tigray, Ethiopia.
[8]
Berhe Y K, Portillo L, Vigueras A L. 2022. Resistance of Opuntia ficus-indica cv 'Rojo Pelon' to Dactylopius coccus (Hemiptera: Dactylopiidae) under greenhouse condition. Journal of the Professional Association for Cactus Development, 24: 290-306.
[9]
Birhane E, Sterck J F, Fetene M, et al. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Journal of Physiological Ecology, 169: 895-904.
[10]
Birhane E, Gebremedihin K M, Tadesse T, et al. 2017. Exclosures restored the density and root colonization of arbuscular mycorrhizal fungi in Tigray, northern Ethiopia. Ecological Processes, 6: 33, doi: 10.1184/s13717-017-0101-9.
doi: 10.1184/s13717-017-0101-9
[11]
Birhane E, Gebretsadik K F, Taye G, et al. 2020. Effects of forest composition and disturbance on arbuscular mycorrhizae spore density, arbuscular mycorrhizae root colonization and soil carbon stocks in a dry afromontane forest in northern Ethiopia. Diversity, 12(4): 133, doi: 10.3390/d12040133.
doi: 10.3390/d12040133
[12]
Brundrett M, Bougher N, Dell B, et al. 1996. Working with mycorrhizas in forestry and agriculture. AClAR Monograph, 32: 374.
[13]
Chen X B, Zhu D Q, Zhao C C, et al. 2019. Community composition and diversity of fungi in soils under different types of Pinus koraiensis forests. Acta Petrologica Sinica, 56(5): 1221-1234.
[14]
Cristina C, Alessandro R, Olubukola O B, et al. 2017. Soil: Do not disturb, mycorrhiza in action. In: Varma A, Prasad R, Tuteja N. Mycorrhiza-Function, Diversity, State of the Art (4th ed.). Berlin: Springer, 27-38.
[15]
Frew A, Powell J R, Hiltpold I, et al. 2017. Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Journal of Soil Biology and Biochemistry, 112: 117-126.
[16]
Garcia K, Chasman D, Roy S, et al. 2017. Physiological responses and gene co expression network of mycorrhizal roots under K+ deprivation. Journal of Plant Physiology, 173(3): 1811-1823.
[17]
Gou Q Q, Ma G L, Qi J J, et al. 2023. Diversity of soil bacteria and fungi communities in artificial forests of the sandy-hilly region of Northwest China. Journal of Arid Land, 15(1): 109-126.
doi: 10.1007/s40333-023-0003-x
[18]
Hailemariam H, Birhane E, Gebresamuel G, et al. 2017 Arbuscular mycorrhiza effects on Faidherbia albida (Del.) A. Chev. growth under varying soil water and phosphorus levels in Northern Ethiopia. Journal of Agroforestry Systems, 92(2): 485-498.
[19]
Hu Y, Xie W, Chen B. 2020. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chemical and Biological Technologies in Agriculture, 7: 20, doi: 10.1186/s40538-020-00186-4.
doi: 10.1186/s40538-020-00186-4
[20]
Liguori G, Inglese G, Pernice F, et al. 2013. CO2 uptake of Opuntia ficus-indica (L.) Mill. whole trees and single cladodes, in relation to plant water status and cladode at Italian. Journal of Agronomy, 8: 14-20.
doi: 10.3923/ja.2009.14.20
[21]
Loik M E. 2008. The effect of cactus spines on light interception and photosystem II for three sympatric species of Opuntia from the Mojave Desert. Physiologia Plantarum, 134(1): 87-98.
doi: 10.1111/ppl.2008.134.issue-1
[22]
Mohammadi M H S, Etemadi N, Arab M M, et al. 2017. Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology and Biochemistry, 111(1): 129-143.
doi: 10.1016/j.plaphy.2016.11.014
[23]
Nobel P S, De la Barrera E. 1999. Carbon and water balances for young fruits of platyopuntias. Physiologia Plantarum, 109(2): 160-166.
doi: 10.1034/j.1399-3054.2000.100208.x
[24]
Nobel P S, De la Barrera E. 2004. CO2uptake by the cultivated Hemiepiphytic cactus, Hylocereus undatus. Annals of Applied Biology, 144(1): 1-8.
[25]
Nobel P S. 2010. Desert Wisdom, Agaves and Cacti, CO2, Water, Climate Change. New York: iUniverse, 198.
[26]
Ochoa M J, Barbera G. 2017. History, economic and agro-ecological importance. In: Inglese P. Crop Ecology, Cultivation and Uses of Cactus Pear. Rome: Food and Agriculture Organization of the United Nations, 13-19.
[27]
Parniske M. 2008. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10): 763-775.
doi: 10.1038/nrmicro1987
pmid: 18794914
[28]
Pena-Valdivia C B, Luna-Cavazos M, Carranza-Sabas J A, et al. 2007. Morphological characterization of Opuntia spp: A multivariate analysis. Journal of the Professional Association for Cactus Development, 10: 1-16.
[29]
Pereira S, Santos M, Leal I, et al. 2021. Arbuscular mycorrhizal inoculation increases drought tolerance and survival of Cenostigma microphyllum seedlings in a seasonally dry tropical forest. Forest Ecology and Management, 492: 119213, doi: 10.1016/j.foreco.2021.119213.
doi: 10.1016/j.foreco.2021.119213
[30]
Pimienta-Barrios E, del Castillo-Aranda M E G, Nobel P S. 2001. Ecophysiology of a wild platyopuntia exposed to prolonged drought. Environmental and Experimental Botany, 47(1): 77-86.
doi: 10.1016/S0098-8472(01)00114-9
[31]
Pimienta-Barrios E, Zañudo-Hernàndez J, Nobel P S. 2005. Effects of young cladodes on the gas exchange of basal cladodes of Opuntia ficus-indica (Cactaceae) under wet and dry conditions. International Journal of Plant Sciences, 166(6): 961-968.
doi: 10.1086/449317
[32]
Ranjan P, Ranjan J K, Misra R L, et al. 2016. Cacti: Notes on their uses and potential for climate change mitigation. Genetic Resources and Crop Evolution, 63: 901-917.
doi: 10.1007/s10722-016-0394-z
[33]
Salem-Fnayou A B, Zemni H, Nefzaoui A, et al. 2014. Micromorphology of cactus-pear (Opintia ficus-indica (L.) Mill.) cladodes based on scanning microscopies. Micron, 56: 68-72.
doi: 10.1016/j.micron.2013.10.010
pmid: 24210248
[34]
Scalisi A, Morandi B, Inglese P, et al. 2015. Cladode growth dynamics in Opuntia ficus-indica under drought. Environmental and Experimental Botany, 122: 158-167.
doi: 10.1016/j.envexpbot.2015.10.003
[35]
Snyman H A. 2004. Effect of various water application strategies on root development of Opuntia ficus-indica and O. robusta under greenhouse growth conditions. Journal of the Professional Association for Cactus Development, 34: 35-61.
[36]
Snyman H A. 2005. A greenhouse study on root dynamics of prickly pears, Opuntia ficus-indica and O. robusta. Journal of Arid Environments, 65(4): 529-542.
doi: 10.1016/j.jaridenv.2005.10.004
[37]
Snyman H A. 2013. Growth rate and water use efficiency of cactus pears Opuntia ficus-indica and O. robusta. Journal Arid Land Research and Management, 27(4): 337-348.
[38]
Stevenson A, Hallsworth J E. 2014. Water and temperature relations of soil Actinobacteria. Environmental Microbiology Report, 6(6): 744-755.
[39]
Stevens B M, Propster J R, Öpik M, et al. 2020. Arbuscular mycorrhizal fungi in roots and soil respond differently to biotic and abiotic factors in the Serengeti. Mycorrhiza, 30: 79-95.
doi: 10.1007/s00572-020-00931-5
pmid: 31970495
[40]
Taghizadeh M H, Farzam M, Nabati J. 2023. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (Pall.) Voss. Journal of Arid Land, 15(2): 205-217.
doi: 10.1007/s40333-023-0092-6
[41]
Tiznado-Hernández M E, Fortiz-Hernández J, Ojeda-Contreras Á J, et al. 2010. Use of the elliptical mathematical formula to estimate the surface area of cladodes in four varieties of Opuntia ficus-indica. Journal of the Professional Association for Cactus Development, 12: 98-109.
[42]
Trejo D, Barois I, Sangabriel-Conde W. 2016. Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Journal of Agroforest System, 90(2): 265-279.