基于粒子群算法的多次反射飞行时间质量分析器电压优化

黄奇, 任熠, 陈政阁, 陈剑松, 洪义, 梁欣, 李梅, 黄正旭, 周振

黄奇, 任熠, 陈政阁, 陈剑松, 洪义, 梁欣, 李梅, 黄正旭, 周振. 基于粒子群算法的多次反射飞行时间质量分析器电压优化[J]. 质谱学报, 2023, 44(5): 667-675. DOI: 10.7538/zpxb.2023.0024
引用本文: 黄奇, 任熠, 陈政阁, 陈剑松, 洪义, 梁欣, 李梅, 黄正旭, 周振. 基于粒子群算法的多次反射飞行时间质量分析器电压优化[J]. 质谱学报, 2023, 44(5): 667-675. DOI: 10.7538/zpxb.2023.0024
HUANG Qi, REN Yi, CHEN Zheng-ge, CHEN Jian-song, HONG Yi, LIANG Xin, LI Mei, HUANG Zheng-xu, ZHOU Zhen. Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 667-675. DOI: 10.7538/zpxb.2023.0024
Citation: HUANG Qi, REN Yi, CHEN Zheng-ge, CHEN Jian-song, HONG Yi, LIANG Xin, LI Mei, HUANG Zheng-xu, ZHOU Zhen. Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 667-675. DOI: 10.7538/zpxb.2023.0024
黄奇, 任熠, 陈政阁, 陈剑松, 洪义, 梁欣, 李梅, 黄正旭, 周振. 基于粒子群算法的多次反射飞行时间质量分析器电压优化[J]. 质谱学报, 2023, 44(5): 667-675. CSTR: 32365.14.zpxb.2023.0024
引用本文: 黄奇, 任熠, 陈政阁, 陈剑松, 洪义, 梁欣, 李梅, 黄正旭, 周振. 基于粒子群算法的多次反射飞行时间质量分析器电压优化[J]. 质谱学报, 2023, 44(5): 667-675. CSTR: 32365.14.zpxb.2023.0024
HUANG Qi, REN Yi, CHEN Zheng-ge, CHEN Jian-song, HONG Yi, LIANG Xin, LI Mei, HUANG Zheng-xu, ZHOU Zhen. Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 667-675. CSTR: 32365.14.zpxb.2023.0024
Citation: HUANG Qi, REN Yi, CHEN Zheng-ge, CHEN Jian-song, HONG Yi, LIANG Xin, LI Mei, HUANG Zheng-xu, ZHOU Zhen. Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(5): 667-675. CSTR: 32365.14.zpxb.2023.0024

基于粒子群算法的多次反射飞行时间质量分析器电压优化

Voltage Optimization of Multiple Reflection Time of Flight Mass Analyzer Based on Particle Swarm Optimization Algorithm

  • 摘要: 多次反射飞行时间(MR-TOF)是一种新型的质量分析器,常用于分析短寿命离子、分离同重元素和存储离子。随着使用需求的增加,提高MR-TOF质量分析器的分辨能力越来越重要。然而,MR-TOF质量分析器电压参数的优化涉及高维度、高精细度和非线性的问题,很难用解析方法得到最优参数。本研究提出了一种基于粒子群(PSO)算法的MR-TOF质量分析器电压参数优化方法,并对粒子群算法进行改进。在SIMION离子光学仿真平台上对优化方法进行测试,比较了标准粒子群算法和改进粒子群算法的优化结果。结果表明,改进粒子群算法能够获得超过810 000的极限质量分辨率,相比标准粒子群算法有更好的性能。该方法具有操作简单、优化速度快、求解效果好等优点,可为MR-TOF质量分析器的电压优化提供方法参考,从而提高MR-TOF质量分析器的开发效率。
    Abstract: Time-of-flight mass spectrometry is a commonly mass spectrometry technique that is widely used in biomedicine, environmental science and food science. The multiple reflection time-of-flight (MR-TOF) mass analyzer is a new type of mass analyzer with ultra-high mass resolution and has been used at institutions, such as Helmholtz Centre for Heavy Ion Research (GSI), European Organization for Nuclear Research (CERN) and High Energy Accelerator Research Organization (KEK) to measure short-lived ion masses, separate isobar and store ions. As the demand for use increasing, it is becoming important to improve the resolving power of MR-TOF mass analyzers. However, the optimization of the voltage parameters of MR-TOF mass analyzers is a high-dimensional, highly refined and non-linear problem, which is difficult to solve optimally by analytical method. In this study, a particle swarm optimization (PSO) algorithm-based method for optimizing the voltage parameters of MR-TOF mass analyzers was proposed. The method used an improved particle swarm optimization (IPSO) approach with a inertia weight decay strategy. The optimization method was tested on the SIMION ion optics simulation platform. Considering 133Cs+ ion with E=1.5 keV, δE=8.5 eV, δx=δy=1 mm, δα=δβ=1.5 mrad, a mass resolving power over 8.1×105 was achieved when Δt=0 ns and a mass resolving power over 5.0×105 was achieved when Δt=20 ns. IPSO optimized the best results to achieve the 2nd order focus of time with respect to energy for the MR-TOF mass analyzer, and the deviation of the ion′s half-turn time of flight was within 1.3×10-6. In 20 times experiments, IPSO improved the maximum results by 33%, the average results by 35% and the standard deviation by 29% compared with PSO optimization, providing better solution quality and stability. IPSO′s linear decay strategy effectively controlled the reduction of the voltage update step size and was able to meet the global search and refinement of the MR-TOF mass analyzer voltage parameter optimization problem. It had good convergence and convergence speed. This work provided a fast and effective method for optimizing the voltage parameters of the MR-TOF mass analyzer and helped to improve the performance of this analyzer. The results showed that the IPSO is able to obtain a limiting mass resolution of more than 810 000, which has better performance compared with the PSO. The method has the advantages of simple operation, fast optimization and better solution, which can provide a method reference for voltage optimization of MR-TOF mass analyzer and thus improve the development efficiency of MR-TOF mass analyzer.
  •   3180

  • [1] RADIONOVA A, FILIPPOV I, DERRICK P J. In pursuit of resolution in time-of-flight mass spectrometry: a historical perspective: in pursuit of resolution in tof mass spectrometry[J]. Mass Spectrometry Reviews, 2016, 35(6): 738-757.
    [2] BOESL U. Time-of-flight mass spectrometry: introduction to the basics: time-of-flight mass spectrometry[J]. Mass Spectrometry Reviews, 2017, 36(1): 86-109.
    [3] 黄建鹏,贺玖明,朱辉,李铁钢,黄正旭,莫婷,李梅. 国产高分辨飞行时间质谱仪在药物分子结构鉴定中的应用[J]. 质谱学报,2016,37(5):431-439.
    HUANG Jianpeng, HE Jiuming, ZHU Hui, LI Tiegang, HUANG Zhengxu, MO Ting, LI Mei. Analysis of pharmaceutical molecules for structure identification by domestic high resolution time-of-flight mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(5): 431-439(in Chinese).
    [4] 解迎双,张欢,王娟,王波. 实时直接分析-串联质谱法快速测定环境水体中涕灭威及其代谢物[J]. 质谱学报,2022,43(1):99-108.
    XIE Yingshuang, ZHANG Huan, WANG Juan, WANG Bo. Rapid determination of aldicarb and its metabolites in water environment by real-time direct analysis-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(1): 99-108(in Chinese).
    [5] 林黛琴,万承波,邱萍,刘花梅. 液相色谱-串联质谱法快速测定食品中4种黄色工业染料[J]. 质谱学报,2013,34(3):170-178.
    LIN Daiqin, WAN Chengbo, QIU Ping, LIU Huamei. Rapid determination of four high yellow dyes in foods by HPLC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2013, 34(3): 170-178(in Chinese).
    [6] WOLLNIK H, CASARES A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors[J]. International Journal of Mass Spectrometry, 2003, 227(2): 217-222.
    [7] PLAβ W R, DICKEL T, SCHEIDENBERGER C. Multiple-reflection time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry, 2013(349/350): 134-144.
    [8] DICKEL T, PLAβ W R, BECKER A, CZOK U, GEISSEL H, HAETTNER E, JESCH C, KINSEL W, PETRICK M, SCHEIDENBERGER C, SIMON A, YAVOR M I. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 172-188.
    [9] WOLF R N, WIENHOLTZ F, ATANASOV D, BECK D, BLAUM K, BORGMANN C H, HERFURTH F, KOWALSKA M, KREIM S, LITVINOV Y A, LUNNEY D, MANEA V, NEIDHERR D, ROSENBUSCH M, SCHW-EIKHARD L, STANJA J, ZUBER K. ISOLTRAP’s multi-reflection time-of-flight mass separator/spectrometer[J]. International Journal of Mass Spectrometry, 2013(349/350): 123-133.
    [10] WIENHOLTZ F, BECK D, BLAUM K, BORGMANN C H, BREITENFELDT M, CAKIRLI R B, GEORGE S, HERFURTH F, HOLT J D, KOWALSKA M, KREIM S, LUNNEY D, MANEA V, MENÉNDEZ J, NEIDHERR D, ROSENBUSCH M, SCHWEIKHARD L, SCHWENK A, SIMONIS J, STANJA J, WOLF R N, ZUBER K. Masses of exotic calcium isotopes pin down nuclear forces[J]. Nature, 2013, 498(7 454): 346-349.
    [11] ITO Y, SCHURY P, WADA M, NAIMI S, SONODA T, MITA H, ARAI F, TAKAMINE A, OKADA K, OZAWA A, WOLLNIK H. Single-reference high-precision mass measurement with a multireflection time-of-flight mass spectrograph[J]. Physical Review C, 2013, 88(1): 011 306.
    [12] SCHURY P, WADA M, ITO Y, ARAI F, NAIMI S, SONODA T, WOLLNIK H, SHCHEPUNOV V A, SMORRA C, YUAN C. A high-resolution multi-reflection time-of-flight mass spectrograph for precision mass measurements at RIKEN/SLOWRI[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 335: 39-53.
    [13] KULIKOV I, ALGORA A, ATANASOV D, ASCHER P, BLAUM K, CAKIRLI R B, HERLERT A, HUANG W J, KARTHEIN J, LITVINOV Y A, LUNNEY D, MANEA V, MOUGEOT M, SCHWEIKHARD L, WELKER A, WIENHOLTZ F. Masses of short-lived 49Sc, 50Sc, 70As, 73Br and stable 196Hg nuclides[J]. Nuclear Physics A, 2020, 1 002: 121 990.
    [14] PIECHACZEK A, SHCHEPUNOV V, CARTER H K, BATCHELDER J C, ZGANJAR E F, LIDDICK S N, WOLLNIK H, HU Y, GRIFFITH B O. Development of a high resolution isobar separator for study of exotic decays[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(19/20): 4510-4514.
    [15] PLAβ W R, DICKEL T, CZOK U, GEISSEL H, PETRICK M, REINHEIMER K, SCHEIDENBERGER C, YAVOR M I. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(19/20): 4560-4564.
    [16] BENNER W H. A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions[J]. Analytical Chemistry, 1997, 69(20): 4162-4168.
    [17] DAHAN M, FISHMAN R, HEBER O, RAPPAPORT M, ALTSTEIN N, ZAJFMAN D, van der ZANDE W J. A new type of electrostatic ion trap for storage of fast ion beams[J]. Review of Scientific Instruments, 1998, 69(1): 76-83.
    [18] SCHULTZ B E, KELLY J M, NICOLOFF C, LONG J, RYAN S, BRODEUR M. Construction and simulation of a multi-reflection time-of-flight mass spectrometer at the university of notre dame[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 376: 251-255.
    [19] WOLF R N, ERITT M, MARX G, SCHWEIKHARD L. A multi-reflection time-of-flight mass separator for isobaric purification of radioactive ion beams[J]. Hyperfine Interactions, 2011, 199(1/3): 115-122.
    [20] CHAUVEAU P, DELAHAYE P, de FRANCE G, el ABIR S, LORY J, MERRER Y, ROSENBUSCH M, SCHWEIKHARD L, WOLF R N. PILGRIM, a multireflection time-of-flight mass spectrometer for spiral2-S3 at GANIL[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 376: 211-215.
    [21] YOON J W, PARK Y H, IM K B, KIM G D, KIM Y K. Design study for a multi-reflection time-of-flight mass spectrograph for very short lived nuclei[C]. Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014), Tokyo, Japan: Journal of the Physical Society of Japan, 2015.
    [22] MURRAY K. The design and optimization of a multi-reflection time-of-flight mass-spectrometer for Barium tagging with nEXO and optimization of the 137Xe veto with EXO-200[D]. Canada: McGill University, 2018.
    [23] DAHL D A. Simion for the personal computer in reflection[J]. International Journal of Mass Spectrometry, 2000, 200(1/3): 3-25.
    [24] SCHURY P, OKADA K, SHCHEPUNOV S, SONODA T, TAKAMINE A, WADA M, WOLLNIK H, YAMAZAKI Y. Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions[J]. The European Physical Journal A, 2009, 42(3): 343.
    [25] 王永生,田玉林,王均英,周小红,黄文学. 用于兰州彭宁离子阱的多反射飞行时间质量分析器的设计和优化[J]. 原子核物理评论,2017,34(3):624-629.
    WANG Yongsheng, TIAN Yulin, WANG Junying, ZHOU Xiaohong, HUANG Wenxue. Design and optimization of a multi-reflection time-of-flight mass spectrometer for LPT[J]. Nuclear Physics Review, 2017, 34(3): 624-629(in Chinese).
    [26] YAVOR M, VERENTCHIKOV A, HASIN J, KOZLOV B, GAVRIK M, TRUFANOV A. Planar multi-reflecting time-of-flight mass analyzer with a jig-saw ion path[J]. Physics Procedia, 2008, 1: 391-400.
    [27] DICKEL T, YAVOR M I, LANG J, PLAβ W R, LIPPERT W, GEISSEL H, SCHEIDENBERGER C. Dynamical time focus shift in multiple-reflection time-of-flight mass spectrometers[J]. International Journal of Mass Spectrometry, 2017, 412: 1-7.
    [28] KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of ICNN′95-international conference on neural networks, IEEE, 1995: 1942-1948.
    [29] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), IEEE, 1999: 1945-1950.
图(1)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  2
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 刊出日期:  2023-09-19

目录

    /

    返回文章
    返回