Effects of high-temperature stress on photosynthetic characteristics, protective enzyme activity, and yield of maize hybrids along with their parental inbred lines
-
摘要:
研究并明确高温胁迫对玉米杂交种及其亲本自交系叶片光合性能、产量性状等的影响, 以期为耐高温玉米品种选育和推广提供理论依据。以‘京农科728’ ‘MC812’ ‘先玉335’和‘郑单958’及其亲本自交系为试验材料, 于花期前后(大喇叭口期—吐丝后7 d)对其进行高温胁迫(高温胁迫15 d)处理, 研究高温胁迫对不同基因型玉米杂交种及其亲本自交系叶绿素相对含量、光合特性、最大光化学效率(Fv/Fm)、保护酶活性、产量及其产量构成要素的影响。结果表明: 1)与大田对照相比, 花期前后高温胁迫下不同杂交种及其亲本自交系的叶绿素相对含量、净光合速率、气孔导度和Fv/Fm均呈降低趋势, 杂交种以‘京农科728’降幅最小, 亲本自交系以‘京2416’降幅最小。胞间CO2浓度和蒸腾速率则均呈升高趋势, 杂交种以‘京农科728’增幅最小, 亲本自交系以‘京2416’增幅最小。2)花期前后高温胁迫导致玉米杂交种及其亲本自交系的穗位叶磷酸烯醇式丙酮酸羧化酶(PEPCase)、核酮糖-1,5-二磷酸羧化酶(RuBPCase)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性呈降低趋势。3)花期前后高温胁迫降低了玉米杂交种及其亲本自交系的穗行数和行粒数, 进而导致产量下降, 杂交种‘京农科728’ ‘MC812’ ‘先玉335’和‘郑单958’产量分别降低3.18%、5.00%、50.61%和9.50%; 亲本自交系中, ‘京2416’的穗行数、行粒数和产量降幅最小, 而‘PH6WC’产量降幅最大。由此可见, 花期前后高温胁迫下‘京农科728’ ‘MC812’及其父本自交‘京2416’具有较高的叶绿素相对含量、光合能力和保护酶活性, 产量受高温影响较小, 具有较好的耐热性。
Abstract:The Huang-Huai-Hai summer maize region is a dominant maize producing area in China. Adverse climates, such as high-temperatures and heat damage, occur frequently during maize growing season and have a great impact on maize production. The effects of high-temperature stress on leaf photosynthetic performance and yield traits of maize hybrids as well as their parent inbred lines were studied to provide a theoretical basis for the breeding and popularization of high-temperature-tolerant maize varieties. ‘Jingnongke728’ ‘MC812’ ‘Xianyu335’ ‘Zhengdan958’ and their parental inbred lines were used, high-temperature treatments from the bell-mouthing stage to 7 d after silking were conducted, and the effects of high-temperature stress on the relative content of chlorophyll, photosynthetic characteristics, Fv/Fm, photosynthetic enzyme activity, yield and yield components were studied. Compared to field control, the relative chlorophyll content, net photosynthetic rate, stomatal conductance, and Fv/Fm of different hybrids and their parent inbred lines decreased under high-temperature stress pre- and post-flowering. The decreases of hybrid ‘Jingnongke728’ and parent inbred line ‘Jing2416’ were the smallest. The intercellular CO2 concentration and transpiration rate displayed an increasing trend, with ‘Jingnongke728’ and ‘Jing2416’ having the smallest increase. The activities of phosphoenolpyruvate carboxylase, ribulose 1, 5-diphosphate carboxylase, catalase, and superoxide dismutase in the ear leaves of maize hybrids and their parent inbred lines decreased under high-temperature stress pre- and post-flowering. High-temperature stress pre- and post-flowering reduced ear row number, kernel per row in maize hybrids and their parent inbred lines, decreasing yield. The yields of hybrids ‘Jingnongke728’ ‘MC812’ ‘Xianyu335’ and ‘Zhengdan958’ decreased by 3.18%, 5.00%, 50.61%, and 9.50%, respectively. Among the parent inbred lines, ‘Jing2416’ had the smallest decrease in ear row number, kernel per row and yield, whereas the yield of ‘PH6WC’ had the largest decrease. ‘Jingnongke728’ ‘MC812’ and their male parent ‘Jing2416’ had higher relative chlorophyll content, photosynthetic capacity, and protective enzyme activity under high-temperature stress pre- and post-flowering, and their yield was less affected by high-temperature; thus, they have better heat tolerance.
-
玉米(Zea mays)是我国种植面积最大、总产量最高的粮食作物, 对保障国家粮食安全和满足市场需求发挥着主力军作用[1]。黄淮海夏玉米区是我国玉米优势产区之一, 冬小麦(Triticum aestivum)-夏玉米一年两熟制是该区主要种植制度[2], 玉米生长季高温热害等不利气候频发重发, 对玉米生产影响很大[3-5]。随着气候变化, 我国玉米产区6—8月份气温超过35℃以上的天数明显增多, 且最高温度高达40℃以上, 每年7月下旬到8月中旬黄淮海夏玉米陆续进入抽雄吐丝期, 大喇叭口期—抽雄吐丝期是玉米对高温胁迫最敏感时期之一, 此时遭受高温胁迫会对光合作用、物质生产及籽粒灌浆产生很大影响[6]。2013—2018年黄淮海夏玉米产区连续6年遭遇高温热害, 致使部分地区玉米结实不良, 甚至绝收, 其中2016年夏玉米生育期缩短4.8%~8.5%, 产量降低12.4%[7]。
前人研究表明, 高温胁迫下玉米同化的生物量减少、籽粒败育率提高, 导致穗粒数减少; 同时导致光合作用强度减弱, 呼吸作用增强, 干物质积累量降低[8-9]。而光合作用是作物产量形成的基础, 90%以上的作物干物质来源于光合产物[10]。植物光合作用对高温极其敏感, 大喇叭口期到成熟期高温胁迫会显著降低夏玉米的籽粒产量、穗位叶光合速率和叶绿素含量, 进而降低叶片“源”的物质生产能力, 导致籽粒充实不良[11]。叶绿素荧光、最大光化学效率(Fv/Fm)和基础荧光(Fo)等与耐热性密切相关[12]。高温胁迫降低了叶片光合色素含量、反应中心Fv/Fm和光系统Ⅱ效率(ΦPSⅡ)、电子传递速率(ETR)和光合速率[13]。随着全球和我国高温天气频发, 培育耐高温玉米品种显得尤为重要, 而亲本自交系对玉米杂交种耐热性的影响及贡献等尚不清楚, 以上这些均值得深入研究。本文以4个在黄淮海区推广应用面积较大的杂交种及其亲本自交系为材料, 通过两年田间试验, 研究了大喇叭口期—吐丝后7 d高温胁迫对叶绿素相对含量及其荧光特性、光合速率及其相关酶活性、保护酶活性等叶片生理指标, 以及产量及产量构成的影响, 以期为耐高温玉米新品种选育和推广提供参考和指导。
1. 材料与方法
1.1 试验材料
以我国黄淮海区夏播玉米主推品种‘郑单958’ ‘先玉335’ ‘京农科728’ ‘MC812’及其亲本自交系为试验材料(表1)。
表 1 供试玉米杂交种及其亲本自交系Table 1. Tested maize hybrids and their parental inbred lines杂交种 Hybrid 母本 Female parent 父本 Male parent 郑单958 Zhengdan958 郑58 Zheng58 昌7-2 Chang7-2 先玉335 Xianyu335 PH6WC PH4CV 京农科728 Jingnongke728 京MC01 JingMC01 京2416 Jing2416 MC812 京B547 JingB547 京2416 Jing2416 1.2 试验设计
试验于北京市农林科学院通州试验基地(40°18′N, 116°45′E, 海拔40 m)进行。试验田耕层土壤(0~20 cm)有机质9.9 g∙kg−1、碱解氮91.9 mg∙kg−1、速效磷28.30 mg∙kg−1、速效钾168 mg∙kg−1。2019年开展预试验, 对供试材料生育期进行精确观测, 2020年和2021年均于5月15日起分批播种, 保证抽雄期基本一致。随机区组设计, 4行区, 5 m行长, 行距60 cm, 每个材料3次重复。高温处理在控温大棚中进行, 棚长50 m、宽10 m、肩高3 m、棚高3.5 m。在高温胁迫14 d内, 控温大棚白天平均温度比棚外大田(对照)高6℃, 且保证白天温度始终处于35℃以上, 以保证达到高温胁迫要求, 具体见图1。其他条件与对照保持一致。花期温度处理阶段从大喇叭口期到吐丝后7 d, 共14 d。
1.3 测定指标
1.3.1 叶绿素相对含量
在吐丝后第5天, 用叶绿素计(SPAD-502型, 日本)测定穗位叶中部叶绿素含量, 测定时避开叶脉, 每个处理测定5株, 重复3次。
1.3.2 光合速率测定
在吐丝后第5天, 用LI-6400XT光合测定仪测定穗位叶的光合作用相关参数, 包括净光合速率(Pn)、胞间CO2浓度(Ci)、气孔导度(Gs)和蒸腾速率(Tr)。每处理重复3次, 每个重复测定3株。采用开放式气路, 温度设定为38℃, 穗位叶附近CO2浓度400 μmol∙mol–1左右, 光合有效辐射1600 μmol∙m–2∙s–1。
1.3.3 叶绿素荧光测定
在吐丝后第5天, 采用FMS-2型便携脉冲调制式荧光仪(英国Hansatech公司生产)测定单株穗位叶暗适应的初始荧光(Fo)和最大荧光(Fm), 计算最大光化学效率(Fv/Fm)=(Fm−Fo)/Fm。每处理重复3次, 每个重复测定3株。
1.3.4 光合作用相关酶活性
在吐丝后第5天, 每个重复取3株穗位叶进行磷酸烯醇式丙酮酸羧化酶(PEPCase)和核酮糖-1,5-二磷酸羧化酶(RuBPCase)活性测定。PEPCase和RuBPCase活性采用施教耐等[14]的方法测定。
1.3.5 保护酶活性
在吐丝后第5天, 每个重复取3株穗位叶测定叶片保护酶活性。丙二醛(MDA)含量测定采用硫代巴比妥酸法[15], 超氧化物歧化酶(SOD)活性测定采用氮蓝四唑(NBT)光还原法[16], 过氧化氢酶(CAT)活性测定采用过氧化氢法[17]。
1.3.6 产量及产量构成因素
成熟期, 每个小区收获中间2行, 并选取20个代表穗测定穗行数、行粒数、千粒重。将收获小区的全部果穗脱粒并自然风干, 用水分仪测定水分后, 计算单株产量。
1.4 数据处理
采用Microsoft Excel 2007和SAS 9.0进行数据处理和分析, 其中处理间差异显著性采用LSD法进行检验。
2. 结果与分析
2.1 高温胁迫对玉米叶绿素相对含量的影响
由表2可知, 花期前后高温胁迫下参试玉米杂交种及其亲本自交系的叶绿素相对含量均呈降低趋势。2年试验结果表明, 与对照相比, 高温处理下参试品种及其亲本自交系的叶绿素相对含量降低3.48, 降幅为5.94% (两年结果平均值)。杂交种中, ‘京农科728’降幅最小(1.13%)且不显著, 其次是‘MC812’, ‘先玉335’降幅最大(8.76%, P<0.05); 亲本自交系中, 以‘京2416’降幅最小(2.62%)、‘昌7-2’降幅最大(9.57%)。花期前后高温胁迫下, ‘京农科728’ ‘MC812’ ‘京2416’ ‘京MC01’‘京B547’ ‘郑58’的叶绿素相对含量降低不显著, 其他品种差异均达显著水平(P<0.05)。
表 2 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系叶绿素相对含量(SPAD)的影响Table 2. Effects of high-temperature stress before and after flowering on SPAD values in leaves of the tested maize hybrids and their parental inbred lines in 2020 and 2021杂交种/亲本自交系
Hybrid/parental inbred line2020 2021 CK TR CK TR 京2416 Jing2416 63.58±3.04ab 62.40±2.99bcNS 64.54±2.50ab 62.36±2.69bcNS 京MC01 JingMC01 53.08±2.70h 50.82±4.03iNS 53.98±3.35hi 49.80±3.05jNS 京B547 JingB547 57.12±1.05f 54.90±2.87gNS 58.70±3.75def 54.52±2.85ghiNS PH4CV 49.22±3.58j 45.76±2.38k* 50.14±3.06j 44.74±2.82k** PH6WC 55.44±2.82g 51.52±3.45i* 56.52±2.55fgh 50.20±3.01j** 郑58 Zheng58 59.94±1.97de 58.08±2.09fNS 61.00±2.70cd 57.00±2.41efgNS 昌7-2 Chang7-2 50.74±2.16i 47.88±1.92j* 52.46±3.43ij 45.44±3.17k** 京农科728 Jingnongke728 62.04±1.32c 61.32±2.61cdNS 63.26±3.19abc 62.56±2.37bcNS MC812 64.00±2.21a 62.72±2.55abcNS 65.30±2.66a 63.22±2.97abcNS 先玉335 Xianyu335 58.00±2.12f 54.78±1.83g* 59.38±3.76de 52.32±2.44i** 郑单958 Zhengdan958 64.02±3.15a 59.58±1.90e** 65.26±3.17a 59.32±1.51de** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 2.2 高温胁迫对玉米光合特性的影响
高温胁迫下, 不同玉米杂交种及其亲本自交系的穗位叶净光合速率和气孔导度均呈降低趋势, 且材料间降幅差异较大(表3)。2年试验结果表明, 与对照相比, 高温胁迫处理下参试品种及其亲本自交系的穗位叶净光合速率和气孔导度平均降幅分别为7.89%和23.47%。杂交种中, ‘京农科728’和‘MC812’降低不显著, 而‘郑单958’和‘先玉335’显著降低(P<0.05)。两年间, ‘京农科728’分别平均降低0.85 μmol(CO2)∙m−2∙s−1和0.03 mol∙m−2∙s−1, 降幅分别为2.42%和8.62%; ‘MC812’净降幅分别为1.99%和11.11%, 而‘先玉335’降幅最大(17.09%和37.25%) (P<0.05)。亲本自交系中, ‘京2416’分别降低0.84 μmol(CO2)∙m−2∙s−1和0.03 mol∙m−2∙s−1, 降幅(2.43%和7.81%)最小且不显著, ‘PH4CV’降幅最大, 分别为13.26%和60.00% (P<0.01)。
表 3 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系光合性能的影响Table 3. Effects of high-temperature stress before and after flowering on photosynthesis of the tested maize hybrids and their parental inbred lines in 2020 and 2021年份
Year杂交种/亲本自交系
Hybrid/parental inbred line净光合速率
Net photosynthetic rate [μmol(CO2)∙m−2∙s−1]胞间CO2浓度
Intercellular CO2 concentration (μmol∙mol−1)气孔导度
Stomatal conductance (mol∙m−2∙s−1)蒸腾速率
Transpiration rate (mmol∙m−2∙s−1)CK TR CK TR CK TR CK TR 2020 京2416 Jing2416 34.74±1.27a 33.81±0.54abcNS 114.46±0.70m 127.63±5.68klmNS 0.30±0.12abcd 0.28±0.01abcdeNS 5.66±0.82g 6.54±0.23efgNS 京MC01 JingMC01 33.16±1.18abcde 30.63±1.00ghiNS 110.13±9.86m 148.98±8.96ijkl* 0.28±0.03abcde 0.23±0.02cdefgNS 5.97±0.67fg 7.06±0.63defNS 京B547 JingB547 32.14±0.46cdefg 29.32±1.43ijNS 117.07±34.05lm 156.12±4.97hijk* 0.22±0.03defg 0.19±0.01efgNS 6.16±0.61efg 7.51±1.81deNS PH4CV 32.02±0.78defg 28.25±0.64jk** 188.67±41.29efgh 231.36±9.14bc** 0.24±0.11cdefg 0.08±0.01h** 6.28±0.22efg 10.48±0.43bc** PH6WC 32.05±1.98defg 27.16±0.87k** 223.72±10.86bcd 282.22±4.07a** 0.22±0.03defg 0.12±0.05h** 7.02±0.82defg 11.65±0.58ab** 郑58 Zheng58 31.50±1.41fefgh 29.25±0.51ij* 202.05±74.68cdef 247.21±23.29b** 0.34±0.07a 0.24±0.03cdefNS 7.48±0.89de 10.67±1.14bc** 昌7-2 Chang7-2 31.44±1.41fgh 29.53±0.49ij* 194.59±14.79defg 227.28±2.89bc** 0.34±0.04a 0.25±0.02bcdef* 6.98±0.41defg 9.63±0.57c** 京农科728 Jingnongke728 34.76±1.21a 34.07±0.73abNS 129.81±10.02klm 136.19±3.36jklmNS 0.31±0.09abc 0.28±0.04abcdeNS 6.29±0.23efg 6.83±0.38defgNS MC812 33.29±0.59abcd 33.01±1.05bcdeNS 151.35±26.66ijkl 172.16±5.55fghiNS 0.27±0.01abcde 0.24±0.04cdefgNS 6.72±1.19defg 7.31±0.41defNS 先玉335 Xianyu335 33.59±1.00abcd 27.91±0.88jk** 170.47±14.67fghij 234.56±23.67bc** 0.27±0.04abcde 0.17±0.02fg** 7.04±0.41defg 12.96±0.94a** 郑单958 Zhengdan958 32.52±0.95bcdef 30.07±1.01hi* 165.49±11.26ghij 215.48±6.85bcde** 0.28±0.08abcde 0.20±0.06efg** 8.02±0.50d 10.75±1.63bc** 2021 京2416 Jing2416 34.73±2.72abcde 33.97±0.92bcdeNS 120.85±6.81i 135.78±18.71ijNS 0.34±0.02a 0.31±0.01abNS 6.02±0.54mn 6.07±0.66mnNS 京MC01 JingMC01 33.26±1.53cdefg 31.02±0.85hiNS 127.22±6.70ij 170.09±5.28fgh** 0.30±0.03ab 0.28±0.07abcdNS 6.82±0.90ijklm 7.70±0.29efghiNS 京B547 JingB547 32.19±0.43fgh 30.50±0.84hiNS 133.74±6.37ij 175.71±17.94efgh** 0.30±0.12ab 0.25±0.03bcdeNS 6.66±0.26jklm 8.59±0.02cdNS PH4CV 35.12±0.49ab 29.99±0.62ij** 179.26±16.23efg 236.28±3.91ab** 0.31±0.11ab 0.14±0.04g* 6.01±0.63mn 8.21±0.74de* PH6WC 34.26±1.02abcde 30.61±1.06hi** 216.07±32.97bcd 257.94±19.12a* 0.25±0.05bcde 0.19±0.01efg** 6.41±0.28klmn 9.51±0.50b** 郑58 Zheng58 32.98±0.26defg 29.95±0.77ij* 183.65±24.02ef 221.09±19.47bc** 0.26±0.01bcde 0.18±0.02efg* 6.14±0.61lmn 8.01±0.78defg* 昌7-2 Chang7-2 34.75±0.23abcd 31.45±0.37ghi** 176.11±11.62efg 204.88±11.44cde** 0.23±0.04bcdef 0.21±0.03defgNS 5.65±0.32n 7.17±0.56ghijk* 京农科728 Jingnongke728 35.81±0.56a 34.79±0.89abcdNS 122.27±5.78i 133.16±13.24ijNS 0.27±0.06abcd 0.25±0.04bcdeNS 7.00±0.22hijkl 7.30±0.54fghijNS MC812 34.93±0.66abc 33.85±1.47bcdeNS 135.29±6.14ij 145.76±27.05hijNS 0.27±0.04abcd 0.24±0.02bcdefNS 7.74±0.63defgh 8.05±0.82defgNS 先玉335 Xianyu335 34.41±2.18abcde 28.47±1.58j** 175.41±46.06efgh 220.94±11.09bc** 0.24±0.01bcdef 0.15±0.04g** 8.12±0.74def 10.93±0.57a** 郑单958 Zhengdan958 32.92±0.37efg 30.88±0.96hi* 152.74±12.37ghi 190.61±7.71def** 0.25±0.04bcde 0.19±0.04efg** 7.37±0.63efghij 9.31±0.31bc* TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 高温胁迫下, 不同玉米杂交种及其亲本自交系的穗位叶胞间CO2浓度和蒸腾速率均呈升高趋势, 且材料间增幅差异较大(表3)。2年试验结果表明, 与对照相比, 高温处理下参试品种及其亲本自交系的穗位叶胞间CO2浓度和蒸腾速率平均增幅分别为22.38%和30.28%。杂交种中, ‘京农科728’和‘MC812’的穗位叶胞间CO2浓度和蒸腾速率增加不显著, 而‘郑单958’和‘先玉335’均显著升高(P<0.05), 并以‘先玉335’增幅最大(31.69%和57.59%); 亲本自交系中, ‘京2416’的穗位叶胞间CO2浓度和蒸腾速率的增幅最小(11.94%和7.96%)且不显著, 而‘PH6WC’蒸腾速率增幅最大, 为57.56% (P<0.01)。
由此可见, ‘京农科728’和‘京2416’在花期前后高温处理下穗位叶的净光合速率和气孔导度降幅以及胞间CO2浓度和蒸腾速率增幅均明显小于‘先玉335’及其亲本自交系‘PH4CV’和‘PH6WC’。
2.3 高温胁迫对玉米光合酶活性的影响
花期前后高温胁迫下, 不同玉米杂交种及其亲本自交系的穗位叶PEPCase和RuBPCase活性均呈降低趋势(表4)。2021年试验结果表明, 与对照相比, 花期前后高温胁迫下参试品种及其亲本自交系的穗位叶PEPCase和RuBPCase活性降幅分别为17.16%和12.36%。杂交种中, ‘京农科728’和‘MC812’降低不显著, 而‘郑单958’(P<0.05)和‘先玉335’ (P<0.01)均显著降低。‘京农科728’降幅最小(4.19%和3.62%), 其次是‘MC812’, 而‘先玉335’降幅最大(26.91%和29.45%); 亲本自交系中, ‘京2416’降幅最小(5.31%和3.47%), ‘PH6WC’降幅最大(32.44%和26.12%)。由此可见, 在花期前后高温处理下, ‘京农科728’和‘京2416’的叶片PEPCase和RuBPCase活性降幅小于‘先玉335’和‘PH6WC’。
表 4 2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系叶片磷酸烯醇式丙酮酸羧化酶(PEPCase)、核酮糖-1,5-二磷酸羧化酶(RuBPCase)活性的影响Table 4. Effects of high-temperature stress before and after flowering stage on phosphoenolpyruvate carboxylase (PEPCase) and ribulose 1,5-diphosphate carboxylase (RuBPcase) activities in leaves of the tested maize hybrids and their parental inbred lines in 2021杂交种/亲本自交系
Hybrid/parental inbred linePEPCase活性 PEPCase activity
[μmol(CO2)∙g−1(FW)∙min−1]RuBPase活性 RuBPase activity
[μmol(CO2)∙g−1(FW)∙min−1]CK TR CK TR 京2416 Jing2416 118.12±2.63abcde 111.85±2.09defNS 88.82±2.1ab 85.73±0.56bcdNS 京MC01 JingMC01 114.97±4.29bcde 99.58±5.62gh* 80.08±0.99efg 73.27±5.16ijk* 京B547 JingB547 111.87±2.05def 89.71±17.10ij* 78.36±1.26fgh 70.60±4.92jkl* PH4CV 110.81±1.25ef 84.14±11.41i** 81.63±4.76def 67.13±3.91l** PH6WC 104.03±4.10fg 70.28±16.40k** 75.19±0.99hij 55.55±3.92n** 郑58 Zheng58 112.55±2.64de 87.67±10.79ij** 81.27±4.2defg 69.69±3.41kl* 昌7-2 Chang7-2 119.75±0.73abcd 99.14±16.12gh* 85.88±1.55bcd 76.91±4.78ghi* 京农科728 Jingnongke728 124.52±1.38a 119.3±1.06abcdNS 92.66±2.02a 89.31±0.80abNS MC812 121.70±2.59abc 113.62±8.44cdeNS 89.50±0.79ab 84.86±2.10bcdNS 先玉335 Xianyu335 122.15±2.80ab 89.27±11.29ij** 86.60±0.73bc 61.10±1.86m** 郑单958 Zhengdan958 119.19±1.52abcde 95.52±13.08hi* 83.68±1.51cde 75.30±3.26hi* TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 2.4 高温胁迫对玉米最大光化学效率(Fv/Fm)的影响
花期前后高温胁迫下, 参试品种及其亲本自交系的叶片最大光化学效率(Fv/Fm)均呈降低趋势(表5)。2020年和2021年杂交种‘京农科728’ ‘MC812’ ‘先玉335’和‘郑单958’的Fv/Fm平均分别比对照下降4.17%、3.82%、18.35%和11.45%, ‘京农科728’和‘MC812’降低不显著, 而‘郑单958’和‘先玉335’均显著降低(P<0.01); 亲本自交系中, ‘京2416’的叶片Fv/Fm比对照降低3.41%, 降幅最小且不显著; 而‘PH6WC’显著(P<0.05)降低且降幅(23.31%)最大。
表 5 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系叶片最大光化学效率(Fv/Fm)的影响Table 5. Effects of high-temperature stress before and after flowering on the maximum photochemical efficiency (Fv/Fm) of the tested maize hybrids and their parental inbred lines in 2020 and 2021杂交种/亲本自交系
Hybrid/parental inbred line2020 2021 CK TR CK TR 京2416 Jing2416 0.88±0.02a 0.85±0.02abNS 0.88±0.01a 0.85±0.02abcNS 京MC01 JingMC01 0.83±0.07abcde 0.76±0.03fghiNS 0.79±0.03fgh 0.73±0.05ijkNS 京B547 JingB547 0.80±0.04cdef 0.74±0.05ghiNS 0.82±0.01bcdefg 0.71±0.03klNS PH4CV 0.79±0.08defg 0.69±0.06jkl* 0.82±0.04bcdefg 0.69±0.05l** PH6WC 0.79±0.12defg 0.65±0.11l* 0.84±0.03bcde 0.60±0.01m** 郑58 Zheng58 0.82±0.07bcde 0.74±0.04hijNS 0.83±0.03bcdef 0.72±0.01jklNS 昌7-2 Chang7-2 0.86±0.02ab 0.79±0.03defgNS 0.86±0.01ab 0.79±0.04ghNS 京农科728 Jingnongke728 0.84±0.02abcd 0.81±0.02cdefNS 0.84±0.01abcd 0.80±0.01defghNS MC812 0.78±0.05efgh 0.74±0.05ghiNS 0.79±0.02fgh 0.77±0.14hiNS 先玉335 Xianyu335 0.78±0.09efgh 0.67±0.1kl** 0.80±0.05efgh 0.62±0.01m** 郑单958 Zhengdan958 0.83±0.03abcde 0.71±0.02l** 0.83±0.01bcdef 0.76±0.03hijk** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 2.5 高温胁迫对玉米保护酶活性和丙二醛的影响
高温胁迫下, 不同玉米杂交种及其亲本自交系的穗位叶CAT和SOD活性均呈降低趋势, 且降幅差异较大(表6)。2021年试验结果表明, 与对照相比, 花期前后高温胁迫处理下参试品种及其亲本自交系叶片CAT和SOD活性降幅分别为26.37%和16.50%。杂交种‘京农科728’ ‘MC812’ ‘先玉335’和‘郑单958’叶片CAT和SOD活性降幅分别为3.51%和2.41%、4.17%和1.24%、51.61%和40.49%、28.69%和9.55%, ‘京农科728’和‘MC812’保护酶活性降幅低于‘郑单958’和‘先玉335’; 亲本自交系中, ‘京2416’叶片CAT和SOD活性降幅最小且不显著(3.77%和2.10%), ‘PH6WC’降幅最大(59.44%和44.50%)。由此可见, ‘京农科728’ ‘MC812’和‘京2416’在高温胁迫下仍保持较高的过氧化氢清除能力。
表 6 2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系穗位叶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量的影响Table 6. Effects of high-temperature stress before and after flowering on superoxide dismutase (SOD) and catalase (CAT) activities, and malondialdehyde (MDA) content in the ear leaf of the tested maize hybrids and their parental inbred lines in 2021杂交种/亲本自交系
Hybrid/parental inbred lineCAT活性 CAT activity
[U∙g−1(FW)∙min−1]SOD活性 SOD activity
[U∙g−1(FW)∙h−1]MDA含量 MDA content
[μmol∙g−1(FW)]CK TR CK TR CK TR 京2416 Jing2416 10.60±0.53cdef 10.20±0.48efNS 624.60±20.31cd 611.49±31.57defNS 9.07±0.06 j 9.57±0.69ijNS 京MC01 JingMC01 9.76±0.63f 7.85±1.04gNS 567.55±31.15g 530.49±16.45hNS 9.15±0.12 j 11.33±0.56deNS 京B547 JingB547 10.29±0.73def 7.40±0.29g* 587.40±16.73efg 517.03±6.67hiNS 9.81±0.74 ghij 10.96±0.27efNS PH4CV 10.08±0.23ef 7.58±1.49g* 597.01±5.13defg 372.98±20.09j** 9.58±0.02ij 13.56±1.09c* PH6WC 9.96±0.17ef 4.04±1.14i** 577.86±12.67fg 320.71±12.02k** 10.41±0.81fgh 16.85±0.35a** 郑58 Zheng58 10.19±0.24ef 5.53±0.61h** 576.78±34.4fg 482.58±53.31i** 10.73±0.03ef 14.89±1.1b* 昌7-2 Chang7-2 11.03±0.08bcde 7.95±1.58g** 615.04±17.59de 529.40±48.75h* 9.33±0.58j 12.00±0.02dNS 京农科728 Jingnongke728 12.52±1.33a 12.08±1.93abNS 693.24±6.25a 676.52±78.8abNS 10.21±1.09fghi 10.42±1.5fghNS MC812 12.22±1.24ab 11.71±2.00abcNS 663.95±20.64ab 655.71±38.57bcNS 10.54±0.04efg 10.91±0.35efNS 先玉335 Xianyu335 11.49±1.4abcd 5.56±0.62h** 619.00±44.28de 368.37±18.59j** 9.83±0.63ghij 15.38±0.50b** 郑单958 Zhengdan958 11.92±1.23ab 8.50±0.81g** 679.41±30.18ab 614.55±7.71de** 9.70±0.02hij 12.87±1.73c** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 高温胁迫下, 不同玉米杂交种及其亲本自交系的穗位叶MDA含量呈升高趋势, 且增幅差异较大(表6)。2021年试验结果表明, 与对照相比, 高温胁迫处理下参试品种及其亲本自交系叶片MDA含量增幅为28.04%。杂交种中, ‘京农科728’ ‘MC812’ ‘先玉335’和‘郑单958’穗位叶MDA含量增幅分别为2.06%、3.51%、56.46%和32.68%, ‘京农科728’和‘MC812’ MDA增幅均低于‘先玉335’和‘郑单958’。亲本自交系中, ‘京2416’增幅最小且不显著(5.51%), ‘PH6WC’增幅最大(61.86%)。由此可见, 高温胁迫可导致MDA含量增加, 进一步证明了高温胁迫的促衰作用, ‘京农科728’ ‘MC812’和‘京2416’在高温胁迫下仍保持较低的MDA含量, 衰老减缓, 表现出较好的耐高温性。
2.6 高温胁迫对玉米产量及产量构成要素的影响
由表7可知, 花期前后高温胁迫显著降低了参试玉米杂交种及其亲本自交系的穗行数、行粒数和单株籽粒产量。‘京农科728’产量、穗行数和行粒数降低不显著, 且降幅低于‘郑单958’和‘先玉335’。与对照相比, 高温处理下‘京农科728’ ‘MC812’ ‘先玉335’和‘郑单958’的产量分别降低3.18%、5.00%、50.61%和9.50%, 穗行数分别降低3.66%、3.74%、12.94%和9.84%, 行粒数分别降低2.54%、4.55%、38.90%和13.87%; 百粒重均呈降低趋势, 其中‘京农科728’ 和‘MC812’百粒重降低不显著, 而‘先玉335’和‘郑单958’显著降低(P<0.05)。高温胁迫下, 亲本自交系中‘京2416’的产量、穗行数和行粒数降低不显著。‘京2416’ ‘京MC01’ ‘京B547’ ‘PH4CV’ ‘PH6WC’ ‘郑58’和‘昌7-2’产量降幅分别为3.79%、15.61%、16.08%、41.26%、53.88%、29.73%和32.56%, 穗行数降幅分别为1.78%、9.08%、9.51%、13.07%、12.40%、12.56%和13.07%, 行粒数降幅分别为2.68%、11.24%、7.83%、28.60%、55.96%、23.02%和7.71%。
表 7 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系产量及产量构成因素的影响Table 7. Effects of high-temperature stress before and after flowering on yield and yield components of the tested maize hybrids and their parental inbred lines in 2020 and 2021年份
Year杂交种/亲本自交系
Hybrid/parental inbred line籽粒产量
Grain yield (g∙plant−1)百粒重
100-grain weight (g)穗行数
Ear row number行粒数
Kernels per rowCK TR CK TR CK TR CK TR 2020 京2416 Jing2416 115.93±5.53efg 111.22±3.98fghNS 33.73±2.21fg 32.86±1.56ghNS 14.10±0.56ghi 13.83±0.62iNS 29.03±1.34j 28.13±1.45jNS 京MC01 JingMC01 101.16±3.78i 88.14±3.23j* 27.33±2.01i 25.52±1.04iNS 13.73±1.23i 12.63±0.24jNS 31.80±1.23g 28.50±0.65jNS 京B547 JingB547 108.94±8.67gh 97.63±5.67iNS 27.15±2.23i 26.47±1.45iNS 13.93±0.67hi 12.53±0.86jNS 28.50±1.56j 25.77±1.22kNS PH4CV 120.08±6.34e 71.50±4.54k** 26.19±3.42i 24.69±2.45ij* 15.77±0.54bcd 13.87±0.99hi* 29.10±0.95ij 20.90±1.42m** PH6WC 104.60±8.76hi 50.73±3.32l** 24.73±1.32ij 30.63±2.66h** 13.93±0.65hi 12.30±1.05jNS 30.40±2.15h 13.50±0.95n** 郑58 Zheng58 117.27±6.66ef 84.33±6.76j* 36.45±1.53ef 34.50±3.23fgNS 12.10±0.88j 10.67±0.98k* 28.10±2.31j 21.70±1.12m** 昌7-2 Chang7-2 99.37±5.34i 69.96±5.78k* 22.42±2.45j 19.61±2.12k* 14.70±0.92efg 12.67±1.01j* 30.17±1.55hi 28.23±1.34j* 京农科728 Jingnongke728 226.31±12.45d 218.30±13.23dNS 39.26±4.23cd 38.30±3.11deNS 16.00±2.02abc 15.43±1.23cdeNS 37.47±3.23de 36.47±2.65eNS MC812 246.04±10.44b 236.57±10.54bcNS 43.07±1.59a 42.04±5.32abNS 15.20±1.34def 14.60±1.56fghNS 39.23±2.65bc 37.50±2.60cdNS 先玉335 Xianyu335 231.62±12.23c 118.97±10.35e** 35.71±2.11ef 32.74±2.35gh* 16.53±1.23a 14.27±1.32ghi* 39.77±3.24ab 24.53±4.23l** 郑单958 Zhengdan958 257.33±9.45a 232.03±13.56c* 41.84±2.65abc 39.35±1.11bcd* 16.20±0.59ab 14.03±0.95ghi* 40.73±3.23a 33.87±1.24f** 2021 京2416 Jing2416 104.42±5.36fg 100.78±5.67fgNS 30.08±3.66h 29.67±2.67hNS 14.00±0.54ef 13.77±1.04efNS 29.47±4.34fghi 28.80±1.55ghijNS 京MC01 JingMC01 97.49±6.23gh 79.50±4.65ij* 25.44±2.54jkl 24.61±1.23klNS 13.80±0.99ef 12.40±0.87hNS 28.70±1.00hijk 25.20±1.52l* 京B547 JingB547 107.68±9.31ef 84.16±3.76i* 26.26±3.98j 25.78±3.24jkNS 13.40±1.02fg 12.20±0.98gNS 30.60±2.12f 28.70±0.98hijkNS PH4CV 112.15±6.12e 64.92±3.34k** 25.14±2.66jkl 24.71±3.01klNS 15.60±1.04abc 13.40±1.12fg* 28.60±1.45ijk 20.30±1.04n** PH6WC 100.56±8.32fg 43.89±2.56l** 24.29±3.33l 27.92±0.98i* 13.80±0.59ef 12.00±0.45h* 30.00±2.42fgh 13.10±1.42o** 郑58 Zheng58 107.15±7.31ef 73.36±4.34j* 33.43±2.98fg 32.47±3.21gNS 12.00±1.23h 10.40±0.56i** 27.50±2.31jk 21.10±1.23n* 昌7-2 Chang7-2 92.20±5.54h 59.24±2.42k* 21.12±1.87m 16.89±1.45n* 14.60±0.42de 12.80±1.23gh* 30.11±1.23fg 27.40±1.45k* 京农科728 Jingnongke728 214.26±8.43c 208.28±cdNS 37.11±3.34bc 36.55±3.04bcdNS 15.80±2.56abc 15.20±1.55bcdNS 37.10±2.67cd 36.20±2.01deNS MC812 242.57±10.42a 227.62±11.23abNS 38.76±2.65a 37.89±2.12abNS 15.00±1.05cd 14.47±1.34deNS 38.96±3.65ab 37.14±2.23bcdNS 先玉335 Xianyu335 222.49±11.11b 105.32±3.45ef** 34.79±2.93ef 32.33±3.09g* 16.40±1.11a 14.41±1.53de* 39.00±1.06ab 23.60±2.35m** 郑单958 Zhengdan958 227.09±6.93ab 206.39±14.23d** 36.05±2.12cde 35.66±3.22bcd* 16.00±0.89ab 15.00±0.91cd* 39.80±3.12a 35.50±2.12e** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 3. 讨论
光合产物是玉米干物质积累的主要来源[18], 光合作用强弱是玉米生产能力的重要判定标准[19]。玉米属喜温作物, 在生长发育过程中需要相对较高的温度, 但温度过高会对光合产物积累和产量造成不良影响[20]。高温胁迫下玉米光合电子传递受阻, 光合酶活性降低, 光合作用受到抑制[21-22]。前人研究表明, 高温胁迫下玉米叶绿素含量和光合作用的关键酶RuBPCase和PEPCase的活性显著降低, 光合速率和气孔导度显著下降, 胞间CO2浓度显著增加[23-24]。本研究表明, 高温胁迫下不同玉米杂交种及其亲本自交系的穗位叶SPAD值、净光合速率和气孔导度降幅差异较大。高温胁迫抑制了叶绿素的生成[25], 表现为叶片SPAD值、RuBPCase和PEPCase活性呈降低趋势, 这与张吉旺等[11]研究结果一致。与对照相比, 高温处理下‘京农科728’和‘MC812’的穗位叶净光合速率和气孔导度下降幅度及胞间CO2浓度和蒸腾速率增幅均明显低于‘先玉335’, 说明花期前后高温胁迫对‘京农科728’和‘MC812’影响较小, 而‘先玉335’受影响较大。在高温胁迫下, 亲本自交系光合性能差异较大, 其中‘京2416’的净光合速率和气孔导度降幅以及胞间CO2浓度和蒸腾速率增幅均明显小于其他自交系。因此, 本文推断‘京农科728’ (‘京MC01’ב京2416’)和‘MC812’ (‘京B547’ב京2416’)较其他参试品种具有更好耐热性的主要原因是其父本‘京2416’耐热性好。
叶绿素荧光技术被称作光合作用的研究探针, 快速、无损伤、方便快捷, 可敏感反映植物光合作用受到的影响[26]。高温胁迫主要损伤叶片光合作用PSⅡ的过程[27]。最大光化学效率(Fv/Fm)是重要荧光参数之一, 可以反映PSⅡ反应中心内的光能转化效率, 是植物发生光抑制的敏感指标[28]。本研究发现, 花期前后高温胁迫降低了不同玉米杂交种及其亲本自交系的叶片Fv/Fm。‘京农科728’和‘MC812’的叶片Fv/Fm下降幅度小于‘先玉335’。亲本自交系中, ‘京2416’的叶片Fv/Fm降幅最小且不显著, 而‘PH6WC’显著降低且降幅最大。高温胁迫能够诱发氧化应激反应, 玉米叶片细胞内产生大量活性氧, 引起膜脂过氧化, 影响细胞膜的结构与功能, 同时增强抗氧化酶活性, 以清除过多的活性氧, 减轻对细胞膜的伤害[29-31]。本研究表明, 高温胁迫下, 不同玉米杂交种及其亲本自交系的穗位叶SOD和CAT活性均呈降低趋势, 但降幅差异较大, 而MDA含量呈升高趋势。高温胁迫对玉米叶片抗氧化酶及膜脂过氧化的影响存在品种间差异, 不同品种叶片中酶活性存在差异, 受高温伤害影响程度不同。其中, ‘京农科728’和‘MC812’叶片SOD和CAT活性下降幅度低于‘先玉335’, 亲本自交系中, ‘京2416’叶片CAT和SOD活性降幅最小且不显著, 而‘PH6WC’降幅最大。由此可见, ‘京农科728’ ‘MC812’和‘京2416’在高温胁迫下仍保持较高的活性氧清除能力, 能够较好地清除高温胁迫产生的过多自由基, 维护细胞内自由基产生与清除的平衡, 使细胞免受自由基伤害, 减缓衰老进程。高温热害成为导致玉米减产的主要非生物胁迫因子之一, 通过影响光合性能、保护酶活性、叶绿素相对含量、穗粒数和百粒重等, 最终导致产量降低[32]。花期前后高温胁迫对玉米籽粒产量的影响主要是由穗粒数减少所致[33]。本研究发现, 花期前后高温胁迫降低了参试玉米品种的单株籽粒产量、行粒数和穗行数。参试玉米杂交种亲本自交系的耐热性差异较大, 父本自交系‘京2416’的耐热性好于其他自交系。在耐热玉米品种培育方面, 应该加大耐热种质的利用, 至少一个亲本应具有较好的耐热性。本研究发现亲本自交系中, ‘京2416’(‘京农科728’和‘MC812’的父本)在高温胁迫下的叶绿素相对含量、光合速率和保护酶活性降幅最小, 表现出了较好的耐高温热害能力。因此, 育种中应重视对‘京2416’等耐热自交系种质的利用, 进一步培育耐高温玉米杂交种。
4. 结论
花期前后高温胁迫显著影响玉米的光合特性、保护酶活性和产量, 杂交种‘京农科728’ ‘MC812’及其父本自交系‘京2416’比杂交种‘先玉335’及其亲本自交系‘PH6WC’和‘PH4CV’具有较高的叶绿素相对含量、光合能力和保护酶活性, 产量受高温影响较小, 具有较好的耐热性。
-
表 1 供试玉米杂交种及其亲本自交系
Table 1 Tested maize hybrids and their parental inbred lines
杂交种 Hybrid 母本 Female parent 父本 Male parent 郑单958 Zhengdan958 郑58 Zheng58 昌7-2 Chang7-2 先玉335 Xianyu335 PH6WC PH4CV 京农科728 Jingnongke728 京MC01 JingMC01 京2416 Jing2416 MC812 京B547 JingB547 京2416 Jing2416 表 2 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系叶绿素相对含量(SPAD)的影响
Table 2 Effects of high-temperature stress before and after flowering on SPAD values in leaves of the tested maize hybrids and their parental inbred lines in 2020 and 2021
杂交种/亲本自交系
Hybrid/parental inbred line2020 2021 CK TR CK TR 京2416 Jing2416 63.58±3.04ab 62.40±2.99bcNS 64.54±2.50ab 62.36±2.69bcNS 京MC01 JingMC01 53.08±2.70h 50.82±4.03iNS 53.98±3.35hi 49.80±3.05jNS 京B547 JingB547 57.12±1.05f 54.90±2.87gNS 58.70±3.75def 54.52±2.85ghiNS PH4CV 49.22±3.58j 45.76±2.38k* 50.14±3.06j 44.74±2.82k** PH6WC 55.44±2.82g 51.52±3.45i* 56.52±2.55fgh 50.20±3.01j** 郑58 Zheng58 59.94±1.97de 58.08±2.09fNS 61.00±2.70cd 57.00±2.41efgNS 昌7-2 Chang7-2 50.74±2.16i 47.88±1.92j* 52.46±3.43ij 45.44±3.17k** 京农科728 Jingnongke728 62.04±1.32c 61.32±2.61cdNS 63.26±3.19abc 62.56±2.37bcNS MC812 64.00±2.21a 62.72±2.55abcNS 65.30±2.66a 63.22±2.97abcNS 先玉335 Xianyu335 58.00±2.12f 54.78±1.83g* 59.38±3.76de 52.32±2.44i** 郑单958 Zhengdan958 64.02±3.15a 59.58±1.90e** 65.26±3.17a 59.32±1.51de** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 表 3 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系光合性能的影响
Table 3 Effects of high-temperature stress before and after flowering on photosynthesis of the tested maize hybrids and their parental inbred lines in 2020 and 2021
年份
Year杂交种/亲本自交系
Hybrid/parental inbred line净光合速率
Net photosynthetic rate [μmol(CO2)∙m−2∙s−1]胞间CO2浓度
Intercellular CO2 concentration (μmol∙mol−1)气孔导度
Stomatal conductance (mol∙m−2∙s−1)蒸腾速率
Transpiration rate (mmol∙m−2∙s−1)CK TR CK TR CK TR CK TR 2020 京2416 Jing2416 34.74±1.27a 33.81±0.54abcNS 114.46±0.70m 127.63±5.68klmNS 0.30±0.12abcd 0.28±0.01abcdeNS 5.66±0.82g 6.54±0.23efgNS 京MC01 JingMC01 33.16±1.18abcde 30.63±1.00ghiNS 110.13±9.86m 148.98±8.96ijkl* 0.28±0.03abcde 0.23±0.02cdefgNS 5.97±0.67fg 7.06±0.63defNS 京B547 JingB547 32.14±0.46cdefg 29.32±1.43ijNS 117.07±34.05lm 156.12±4.97hijk* 0.22±0.03defg 0.19±0.01efgNS 6.16±0.61efg 7.51±1.81deNS PH4CV 32.02±0.78defg 28.25±0.64jk** 188.67±41.29efgh 231.36±9.14bc** 0.24±0.11cdefg 0.08±0.01h** 6.28±0.22efg 10.48±0.43bc** PH6WC 32.05±1.98defg 27.16±0.87k** 223.72±10.86bcd 282.22±4.07a** 0.22±0.03defg 0.12±0.05h** 7.02±0.82defg 11.65±0.58ab** 郑58 Zheng58 31.50±1.41fefgh 29.25±0.51ij* 202.05±74.68cdef 247.21±23.29b** 0.34±0.07a 0.24±0.03cdefNS 7.48±0.89de 10.67±1.14bc** 昌7-2 Chang7-2 31.44±1.41fgh 29.53±0.49ij* 194.59±14.79defg 227.28±2.89bc** 0.34±0.04a 0.25±0.02bcdef* 6.98±0.41defg 9.63±0.57c** 京农科728 Jingnongke728 34.76±1.21a 34.07±0.73abNS 129.81±10.02klm 136.19±3.36jklmNS 0.31±0.09abc 0.28±0.04abcdeNS 6.29±0.23efg 6.83±0.38defgNS MC812 33.29±0.59abcd 33.01±1.05bcdeNS 151.35±26.66ijkl 172.16±5.55fghiNS 0.27±0.01abcde 0.24±0.04cdefgNS 6.72±1.19defg 7.31±0.41defNS 先玉335 Xianyu335 33.59±1.00abcd 27.91±0.88jk** 170.47±14.67fghij 234.56±23.67bc** 0.27±0.04abcde 0.17±0.02fg** 7.04±0.41defg 12.96±0.94a** 郑单958 Zhengdan958 32.52±0.95bcdef 30.07±1.01hi* 165.49±11.26ghij 215.48±6.85bcde** 0.28±0.08abcde 0.20±0.06efg** 8.02±0.50d 10.75±1.63bc** 2021 京2416 Jing2416 34.73±2.72abcde 33.97±0.92bcdeNS 120.85±6.81i 135.78±18.71ijNS 0.34±0.02a 0.31±0.01abNS 6.02±0.54mn 6.07±0.66mnNS 京MC01 JingMC01 33.26±1.53cdefg 31.02±0.85hiNS 127.22±6.70ij 170.09±5.28fgh** 0.30±0.03ab 0.28±0.07abcdNS 6.82±0.90ijklm 7.70±0.29efghiNS 京B547 JingB547 32.19±0.43fgh 30.50±0.84hiNS 133.74±6.37ij 175.71±17.94efgh** 0.30±0.12ab 0.25±0.03bcdeNS 6.66±0.26jklm 8.59±0.02cdNS PH4CV 35.12±0.49ab 29.99±0.62ij** 179.26±16.23efg 236.28±3.91ab** 0.31±0.11ab 0.14±0.04g* 6.01±0.63mn 8.21±0.74de* PH6WC 34.26±1.02abcde 30.61±1.06hi** 216.07±32.97bcd 257.94±19.12a* 0.25±0.05bcde 0.19±0.01efg** 6.41±0.28klmn 9.51±0.50b** 郑58 Zheng58 32.98±0.26defg 29.95±0.77ij* 183.65±24.02ef 221.09±19.47bc** 0.26±0.01bcde 0.18±0.02efg* 6.14±0.61lmn 8.01±0.78defg* 昌7-2 Chang7-2 34.75±0.23abcd 31.45±0.37ghi** 176.11±11.62efg 204.88±11.44cde** 0.23±0.04bcdef 0.21±0.03defgNS 5.65±0.32n 7.17±0.56ghijk* 京农科728 Jingnongke728 35.81±0.56a 34.79±0.89abcdNS 122.27±5.78i 133.16±13.24ijNS 0.27±0.06abcd 0.25±0.04bcdeNS 7.00±0.22hijkl 7.30±0.54fghijNS MC812 34.93±0.66abc 33.85±1.47bcdeNS 135.29±6.14ij 145.76±27.05hijNS 0.27±0.04abcd 0.24±0.02bcdefNS 7.74±0.63defgh 8.05±0.82defgNS 先玉335 Xianyu335 34.41±2.18abcde 28.47±1.58j** 175.41±46.06efgh 220.94±11.09bc** 0.24±0.01bcdef 0.15±0.04g** 8.12±0.74def 10.93±0.57a** 郑单958 Zhengdan958 32.92±0.37efg 30.88±0.96hi* 152.74±12.37ghi 190.61±7.71def** 0.25±0.04bcde 0.19±0.04efg** 7.37±0.63efghij 9.31±0.31bc* TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 表 4 2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系叶片磷酸烯醇式丙酮酸羧化酶(PEPCase)、核酮糖-1,5-二磷酸羧化酶(RuBPCase)活性的影响
Table 4 Effects of high-temperature stress before and after flowering stage on phosphoenolpyruvate carboxylase (PEPCase) and ribulose 1,5-diphosphate carboxylase (RuBPcase) activities in leaves of the tested maize hybrids and their parental inbred lines in 2021
杂交种/亲本自交系
Hybrid/parental inbred linePEPCase活性 PEPCase activity
[μmol(CO2)∙g−1(FW)∙min−1]RuBPase活性 RuBPase activity
[μmol(CO2)∙g−1(FW)∙min−1]CK TR CK TR 京2416 Jing2416 118.12±2.63abcde 111.85±2.09defNS 88.82±2.1ab 85.73±0.56bcdNS 京MC01 JingMC01 114.97±4.29bcde 99.58±5.62gh* 80.08±0.99efg 73.27±5.16ijk* 京B547 JingB547 111.87±2.05def 89.71±17.10ij* 78.36±1.26fgh 70.60±4.92jkl* PH4CV 110.81±1.25ef 84.14±11.41i** 81.63±4.76def 67.13±3.91l** PH6WC 104.03±4.10fg 70.28±16.40k** 75.19±0.99hij 55.55±3.92n** 郑58 Zheng58 112.55±2.64de 87.67±10.79ij** 81.27±4.2defg 69.69±3.41kl* 昌7-2 Chang7-2 119.75±0.73abcd 99.14±16.12gh* 85.88±1.55bcd 76.91±4.78ghi* 京农科728 Jingnongke728 124.52±1.38a 119.3±1.06abcdNS 92.66±2.02a 89.31±0.80abNS MC812 121.70±2.59abc 113.62±8.44cdeNS 89.50±0.79ab 84.86±2.10bcdNS 先玉335 Xianyu335 122.15±2.80ab 89.27±11.29ij** 86.60±0.73bc 61.10±1.86m** 郑单958 Zhengdan958 119.19±1.52abcde 95.52±13.08hi* 83.68±1.51cde 75.30±3.26hi* TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 表 5 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系叶片最大光化学效率(Fv/Fm)的影响
Table 5 Effects of high-temperature stress before and after flowering on the maximum photochemical efficiency (Fv/Fm) of the tested maize hybrids and their parental inbred lines in 2020 and 2021
杂交种/亲本自交系
Hybrid/parental inbred line2020 2021 CK TR CK TR 京2416 Jing2416 0.88±0.02a 0.85±0.02abNS 0.88±0.01a 0.85±0.02abcNS 京MC01 JingMC01 0.83±0.07abcde 0.76±0.03fghiNS 0.79±0.03fgh 0.73±0.05ijkNS 京B547 JingB547 0.80±0.04cdef 0.74±0.05ghiNS 0.82±0.01bcdefg 0.71±0.03klNS PH4CV 0.79±0.08defg 0.69±0.06jkl* 0.82±0.04bcdefg 0.69±0.05l** PH6WC 0.79±0.12defg 0.65±0.11l* 0.84±0.03bcde 0.60±0.01m** 郑58 Zheng58 0.82±0.07bcde 0.74±0.04hijNS 0.83±0.03bcdef 0.72±0.01jklNS 昌7-2 Chang7-2 0.86±0.02ab 0.79±0.03defgNS 0.86±0.01ab 0.79±0.04ghNS 京农科728 Jingnongke728 0.84±0.02abcd 0.81±0.02cdefNS 0.84±0.01abcd 0.80±0.01defghNS MC812 0.78±0.05efgh 0.74±0.05ghiNS 0.79±0.02fgh 0.77±0.14hiNS 先玉335 Xianyu335 0.78±0.09efgh 0.67±0.1kl** 0.80±0.05efgh 0.62±0.01m** 郑单958 Zhengdan958 0.83±0.03abcde 0.71±0.02l** 0.83±0.01bcdef 0.76±0.03hijk** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 表 6 2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系穗位叶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量的影响
Table 6 Effects of high-temperature stress before and after flowering on superoxide dismutase (SOD) and catalase (CAT) activities, and malondialdehyde (MDA) content in the ear leaf of the tested maize hybrids and their parental inbred lines in 2021
杂交种/亲本自交系
Hybrid/parental inbred lineCAT活性 CAT activity
[U∙g−1(FW)∙min−1]SOD活性 SOD activity
[U∙g−1(FW)∙h−1]MDA含量 MDA content
[μmol∙g−1(FW)]CK TR CK TR CK TR 京2416 Jing2416 10.60±0.53cdef 10.20±0.48efNS 624.60±20.31cd 611.49±31.57defNS 9.07±0.06 j 9.57±0.69ijNS 京MC01 JingMC01 9.76±0.63f 7.85±1.04gNS 567.55±31.15g 530.49±16.45hNS 9.15±0.12 j 11.33±0.56deNS 京B547 JingB547 10.29±0.73def 7.40±0.29g* 587.40±16.73efg 517.03±6.67hiNS 9.81±0.74 ghij 10.96±0.27efNS PH4CV 10.08±0.23ef 7.58±1.49g* 597.01±5.13defg 372.98±20.09j** 9.58±0.02ij 13.56±1.09c* PH6WC 9.96±0.17ef 4.04±1.14i** 577.86±12.67fg 320.71±12.02k** 10.41±0.81fgh 16.85±0.35a** 郑58 Zheng58 10.19±0.24ef 5.53±0.61h** 576.78±34.4fg 482.58±53.31i** 10.73±0.03ef 14.89±1.1b* 昌7-2 Chang7-2 11.03±0.08bcde 7.95±1.58g** 615.04±17.59de 529.40±48.75h* 9.33±0.58j 12.00±0.02dNS 京农科728 Jingnongke728 12.52±1.33a 12.08±1.93abNS 693.24±6.25a 676.52±78.8abNS 10.21±1.09fghi 10.42±1.5fghNS MC812 12.22±1.24ab 11.71±2.00abcNS 663.95±20.64ab 655.71±38.57bcNS 10.54±0.04efg 10.91±0.35efNS 先玉335 Xianyu335 11.49±1.4abcd 5.56±0.62h** 619.00±44.28de 368.37±18.59j** 9.83±0.63ghij 15.38±0.50b** 郑单958 Zhengdan958 11.92±1.23ab 8.50±0.81g** 679.41±30.18ab 614.55±7.71de** 9.70±0.02hij 12.87±1.73c** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. 表 7 2020年和2021年花期前后高温胁迫对参试玉米杂交种及其亲本自交系产量及产量构成因素的影响
Table 7 Effects of high-temperature stress before and after flowering on yield and yield components of the tested maize hybrids and their parental inbred lines in 2020 and 2021
年份
Year杂交种/亲本自交系
Hybrid/parental inbred line籽粒产量
Grain yield (g∙plant−1)百粒重
100-grain weight (g)穗行数
Ear row number行粒数
Kernels per rowCK TR CK TR CK TR CK TR 2020 京2416 Jing2416 115.93±5.53efg 111.22±3.98fghNS 33.73±2.21fg 32.86±1.56ghNS 14.10±0.56ghi 13.83±0.62iNS 29.03±1.34j 28.13±1.45jNS 京MC01 JingMC01 101.16±3.78i 88.14±3.23j* 27.33±2.01i 25.52±1.04iNS 13.73±1.23i 12.63±0.24jNS 31.80±1.23g 28.50±0.65jNS 京B547 JingB547 108.94±8.67gh 97.63±5.67iNS 27.15±2.23i 26.47±1.45iNS 13.93±0.67hi 12.53±0.86jNS 28.50±1.56j 25.77±1.22kNS PH4CV 120.08±6.34e 71.50±4.54k** 26.19±3.42i 24.69±2.45ij* 15.77±0.54bcd 13.87±0.99hi* 29.10±0.95ij 20.90±1.42m** PH6WC 104.60±8.76hi 50.73±3.32l** 24.73±1.32ij 30.63±2.66h** 13.93±0.65hi 12.30±1.05jNS 30.40±2.15h 13.50±0.95n** 郑58 Zheng58 117.27±6.66ef 84.33±6.76j* 36.45±1.53ef 34.50±3.23fgNS 12.10±0.88j 10.67±0.98k* 28.10±2.31j 21.70±1.12m** 昌7-2 Chang7-2 99.37±5.34i 69.96±5.78k* 22.42±2.45j 19.61±2.12k* 14.70±0.92efg 12.67±1.01j* 30.17±1.55hi 28.23±1.34j* 京农科728 Jingnongke728 226.31±12.45d 218.30±13.23dNS 39.26±4.23cd 38.30±3.11deNS 16.00±2.02abc 15.43±1.23cdeNS 37.47±3.23de 36.47±2.65eNS MC812 246.04±10.44b 236.57±10.54bcNS 43.07±1.59a 42.04±5.32abNS 15.20±1.34def 14.60±1.56fghNS 39.23±2.65bc 37.50±2.60cdNS 先玉335 Xianyu335 231.62±12.23c 118.97±10.35e** 35.71±2.11ef 32.74±2.35gh* 16.53±1.23a 14.27±1.32ghi* 39.77±3.24ab 24.53±4.23l** 郑单958 Zhengdan958 257.33±9.45a 232.03±13.56c* 41.84±2.65abc 39.35±1.11bcd* 16.20±0.59ab 14.03±0.95ghi* 40.73±3.23a 33.87±1.24f** 2021 京2416 Jing2416 104.42±5.36fg 100.78±5.67fgNS 30.08±3.66h 29.67±2.67hNS 14.00±0.54ef 13.77±1.04efNS 29.47±4.34fghi 28.80±1.55ghijNS 京MC01 JingMC01 97.49±6.23gh 79.50±4.65ij* 25.44±2.54jkl 24.61±1.23klNS 13.80±0.99ef 12.40±0.87hNS 28.70±1.00hijk 25.20±1.52l* 京B547 JingB547 107.68±9.31ef 84.16±3.76i* 26.26±3.98j 25.78±3.24jkNS 13.40±1.02fg 12.20±0.98gNS 30.60±2.12f 28.70±0.98hijkNS PH4CV 112.15±6.12e 64.92±3.34k** 25.14±2.66jkl 24.71±3.01klNS 15.60±1.04abc 13.40±1.12fg* 28.60±1.45ijk 20.30±1.04n** PH6WC 100.56±8.32fg 43.89±2.56l** 24.29±3.33l 27.92±0.98i* 13.80±0.59ef 12.00±0.45h* 30.00±2.42fgh 13.10±1.42o** 郑58 Zheng58 107.15±7.31ef 73.36±4.34j* 33.43±2.98fg 32.47±3.21gNS 12.00±1.23h 10.40±0.56i** 27.50±2.31jk 21.10±1.23n* 昌7-2 Chang7-2 92.20±5.54h 59.24±2.42k* 21.12±1.87m 16.89±1.45n* 14.60±0.42de 12.80±1.23gh* 30.11±1.23fg 27.40±1.45k* 京农科728 Jingnongke728 214.26±8.43c 208.28±cdNS 37.11±3.34bc 36.55±3.04bcdNS 15.80±2.56abc 15.20±1.55bcdNS 37.10±2.67cd 36.20±2.01deNS MC812 242.57±10.42a 227.62±11.23abNS 38.76±2.65a 37.89±2.12abNS 15.00±1.05cd 14.47±1.34deNS 38.96±3.65ab 37.14±2.23bcdNS 先玉335 Xianyu335 222.49±11.11b 105.32±3.45ef** 34.79±2.93ef 32.33±3.09g* 16.40±1.11a 14.41±1.53de* 39.00±1.06ab 23.60±2.35m** 郑单958 Zhengdan958 227.09±6.93ab 206.39±14.23d** 36.05±2.12cde 35.66±3.22bcd* 16.00±0.89ab 15.00±0.91cd* 39.80±3.12a 35.50±2.12e** TR: 高温胁迫; CK: 常温对照。数据后不同小写字母表示相同处理下不同试验材料间差异显著(P<0.05), **、*和NS分别表示TR与CK处理在P<0.01、P<0.05水平差异显著和差异不显著。TR: high-temperature stress; CK: control of field temperature. Different lowercase letters after the data indicate significant differences among different materials under the same treatment (P<0.05). **, * and NS mean significant differences at P<0.01 and P<0.05 levels, and no significant difference between TR and CK treatments, respectively. -
[1] 赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策[J]. 中国农业科技导报, 2013, 15(3): 1−6 doi: 10.3969/j.issn.1008-0864.2013.03.01 ZHAO J R, WANG R H. Development process, problem and countermeasure of maize production in China[J]. Journal of Agricultural Science and Technology, 2013, 15(3): 1−6 doi: 10.3969/j.issn.1008-0864.2013.03.01
[2] 徐田军, 吕天放, 赵久然, 等. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性[J]. 作物学报, 2021, 47(3): 566−574 XU T J, LYU T F, ZHAO J R, et al. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai Region[J]. Acta Agronomica Sinica, 2021, 47(3): 566−574
[3] WANG X L, LUO N, ZHU Y P, et al. Water replenishment to maize under heat stress improves canopy temperature and grain filling traits during the reproductive stage[J]. Agricultural and Forest Meteorology, 2023, 340: 109627 doi: 10.1016/j.agrformet.2023.109627
[4] 刘哲, 乔红兴, 赵祖亮, 等. 黄淮海夏播玉米花期高温热害空间分布规律研究[J]. 农业机械学报, 2015, 46(7): 272−279 doi: 10.6041/j.issn.1000-1298.2015.07.039 LIU Z, QIAO H X, ZHAO Z L, et al. Spatial distribution of high temperature stress at corn flowering stage in Huang-Huai-Hai Plain of China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 272−279 doi: 10.6041/j.issn.1000-1298.2015.07.039
[5] 邵靖宜, 李小凡, 于维祯, 等. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响[J]. 中国农业科学, 2021, 54(17): 3623−3631 doi: 10.3864/j.issn.0578-1752.2021.17.006 SHAO J Y, LI X F, YU W Z, et al. Combined effects of high temperature and drought on yield and stem microstructure of summer maize[J]. Scientia Agricultura Sinica, 2021, 54(17): 3623−3631 doi: 10.3864/j.issn.0578-1752.2021.17.006
[6] MITCHELL J C, PETOLINO J F. Heat stress effects on isolated reproductive organs of maize[J]. Journal of Plant Physiology, 1988, 133(5): 625−628 doi: 10.1016/S0176-1617(88)80019-1
[7] 任寒, 刘鹏, 董树亭, 等. 高温胁迫影响玉米生长发育的生理机制研究进展[J]. 玉米科学, 2019, 27(5): 109−115 REN H, LIU P, DONG S T, et al. Research advancements of effect of high temperature stress on growth and development of maize[J]. Journal of Maize Sciences, 2019, 27(5): 109−115
[8] SINGH R P, VARA PRASAD P V, SUNITA K, et al. Influence of high temperature and breeding for heat tolerance in cotton: A review[J]. Advances in Agronomy, 2007, 93: 313−385
[9] ZANDALINAS S I, MITTLER R, BALFAGÓN D, et al. Plant adaptations to the combination of drought and high temperatures[J]. Physiologia Plantarum, 2018, 162(1): 2−12 doi: 10.1111/ppl.12540
[10] 黄振喜, 王永军, 王空军, 等. 产量15 000 kg∙ha−1以上夏玉米灌浆期间的光合特性[J]. 中国农业科学, 2007, 40(9): 1898−1906 doi: 10.3321/j.issn:0578-1752.2007.09.008 HUANG Z X, WANG Y J, WANG K J, et al. Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15 000 kg∙ha−1[J]. Scientia Agricultura Sinica, 2007, 40(9): 1898−1906 doi: 10.3321/j.issn:0578-1752.2007.09.008
[11] 张吉旺, 董树亭, 王空军, 等. 大田增温对夏玉米光合特性的影响[J]. 应用生态学报, 2008, 19(1): 81−86 ZHANG J W, DONG S T, WANG K J, et al. Effects of increasing field temperature on photosynthetic characteristics of summer maize[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 81−86
[12] WANG X L, ZHU Y P, YAN Y, et al. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize[J]. Journal of Integrative Agriculture, 2023, 22(8): 2370−2383 doi: 10.1016/j.jia.2023.02.012
[13] 张保仁. 高温对玉米产量和品质的影响及调控研究[D]. 泰安: 山东农业大学, 2003: 50–54 ZHANG B R. Studies on effect of high temperature on yield and quality and regulation in maize (Zea mays L.)[D]. Tai’an: Shandong Agricultural University, 2003: 50–54
[14] 施教耐, 吴敏贤, 查静娟. 植物磷酸烯醇式丙酮酸羧化酶的研究——Ⅰ. PEP羧化酶同功酶的分离和变构特性的比较[J]. 植物生理学报, 1979, 5(3): 225−235 SHI J N, WU M X, ZHA J J. Studies on plant phosphoenolpyruvate carboxylase—Ⅰ . separation and properties of pep carboxylase isoenzymes[J]. Physiology and Molecular Biology of Plants, 1979, 5(3): 225−235
[15] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6): 55−57 WANG A G, LUO G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications, 1990(6): 55−57
[16] CHANCE B, MAEHLY A C. Assay of catalases and peroxidases[J]. Methods in Enzymology, 1955, 2: 764−775
[17] 赵世杰. 植物生理学实验指导[M]. 北京: 中国农业科技出版社, 1998 ZHAO S J. Experimental Instruction of Plant Physiology[M]. Beijing: China Agriculture Science and Technology Press, 1998
[18] 宋慧, 王涛, 闫宏山, 等. 不同类型谷子品种(系)光合性能、干物质积累转运和籽粒灌浆特性对产量的影响[J]. 中国农业大学学报, 2022, 27(7): 58−72 doi: 10.11841/j.issn.1007-4333.2022.07.06 SONG H, WANG T, YAN H S, et al. Study on the relationship between the photosynthetic characteristics, dry matter accumulation, grain filling parameter and yield of different genotypes foxtail millet cultivars/lines[J]. Journal of China Agricultural University, 2022, 27(7): 58−72 doi: 10.11841/j.issn.1007-4333.2022.07.06
[19] 马昕, 蔡丰乐, 穆心愿, 等. 施氮量对穗期高温胁迫下玉米叶片光合生理及产量的影响[J]. 植物营养与肥料学报, 2022, 28(10): 1852−1866 doi: 10.11674/zwyf.2022035 MA X, CAI F L, MU X Y, et al. Effects of nitrogen application rate on photosynthetic physiology of maize leaves and yield under high temperature stress at ear stage[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1852−1866 doi: 10.11674/zwyf.2022035
[20] 和骅芸, 胡琦, 潘学标, 等. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析[J]. 中国农业气象, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001 HE H Y, HU Q, PAN X B, et al. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change[J]. Chinese Journal of Agrometeorology, 2020, 41(1): 1−15 doi: 10.3969/j.issn.1000-6362.2020.01.001
[21] 陈朝辉, 王安乐, 王娇娟, 等. 高温对玉米生产的危害及防御措施[J]. 作物杂志, 2008(4): 90−92 doi: 10.3969/j.issn.1001-7283.2008.04.029 CHEN Z H, WANG A L, WANG J J, et al. Influence of high temperature on growth and development of maize[J]. Crops, 2008(4): 90−92 doi: 10.3969/j.issn.1001-7283.2008.04.029
[22] KARIM M A, FRACHEBOUD Y, STAMP P. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves[J]. Physiologia Plantarum, 1999, 105(4): 685−693 doi: 10.1034/j.1399-3054.1999.105413.x
[23] CHEN J, XU W, VELTEN J, et al. Characterization of maize inbred lines for drought and heat tolerance[J]. Journal of Soil and Water Conservation, 2012, 67(5): 354−364 doi: 10.2489/jswc.67.5.354
[24] CRAFTS-BRANDNER S J, SALVUCCI M E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress[J]. Plant Physiology, 2002, 129(4): 1773−1780 doi: 10.1104/pp.002170
[25] 赵龙飞, 李潮海, 刘天学, 等. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响[J]. 中国农业科学, 2012, 45(23): 4947−4958 doi: 10.3864/j.issn.0578-1752.2012.23.023 ZHAO L F, LI C H, LIU T X, et al. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.)[J]. Scientia Agricultura Sinica, 2012, 45(23): 4947−4958 doi: 10.3864/j.issn.0578-1752.2012.23.023
[26] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 34(4): 444−448 ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 34(4): 444−448
[27] 张睿佳, 李瑛, 虞秀明, 等. 高温胁迫与外源油菜素内酯对‘巨峰’葡萄叶片光合生理和果实品质的影响[J]. 果树学报, 2015, 32(4): 590−596 ZHANG R J, LI Y, YU X M, et al. Effects of heat stress and exogenous brassinolide on photosynthesis of leaves and berry quality of ‘Kyoho’ grapevine[J]. Journal of Fruit Science, 2015, 32(4): 590−596
[28] 尹赜鹏, 鹿嘉智, 高振华, 等. 番茄幼苗叶片光合作用、PSⅡ电子传递及活性氧对短期高温胁迫的响应[J]. 北方园艺, 2019(5): 1−11 doi: 10.11937/bfyy.20183026 YIN Z P, LU J Z, GAO Z H, et al. Effects of photosynthetic, PSⅡ electron transport and reactive oxygen species on short-term high temperature stress in tomato seedlings[J]. Northern Horticulture, 2019(5): 1−11 doi: 10.11937/bfyy.20183026
[29] 刘萍, 郭文善, 浦汉春, 等. 灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响[J]. 中国农业科学, 2005, 38(12): 2403−2407 doi: 10.3321/j.issn:0578-1752.2005.12.005 LIU P, GUO W S, PU H C, et al. Effects of high temperature during grain filling period on antioxidant enzymes and lipid peroxidation in flag leaves of wheat[J]. Scientia Agricultura Sinica, 2005, 38(12): 2403−2407 doi: 10.3321/j.issn:0578-1752.2005.12.005
[30] RIZHSKY L, LIANG H J, MITTLER R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3): 1143−1151 doi: 10.1104/pp.006858
[31] 孙宁宁, 于康珂, 詹静, 等. 不同成熟度玉米叶片抗氧化生理对高温胁迫的响应[J]. 玉米科学, 2017, 25(5): 77−84 SUN N N, YU K K, ZHAN J, et al. Responses of antioxidative physiology to high temperature in different maturity leaves of maize[J]. Journal of Maize Sciences, 2017, 25(5): 77−84
[32] RATTALINO EDREIRA J I, OTEGUI M E. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions[J]. Field Crops Research, 2013, 142: 58−67 doi: 10.1016/j.fcr.2012.11.009
[33] 高英波, 张慧, 单晶, 等. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响[J]. 中国农业科学, 2020, 53(19): 3954−3963 doi: 10.3864/j.issn.0578-1752.2020.19.009 GAO Y B, ZHANG H, SHAN J, et al. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars[J]. Scientia Agricultura Sinica, 2020, 53(19): 3954−3963 doi: 10.3864/j.issn.0578-1752.2020.19.009