Research Progress of Recommendation Technology in Location-Based Social Networks
-
摘要: 随着移动互联网技术、定位技术和无线传感技术的飞速发展以及智能手机的不断普及,基于位置的社会化网络及其带来的应用服务应运而生并得到了迅速的发展.位置数据弥合了物理世界和数字世界之间的鸿沟,使得人们能够更深入地了解用户的偏好和行为.针对用户的兴趣所在,为用户提供基于位置的个性化推荐服务,已成为当前基于位置的社会化网络的一项重要服务,得到工业界和学术界的广泛重视,正成为推荐系统和社会化网络研究领域的一个新的研究热点.从推荐对象、推荐方法和评价方法3个方面对基于位置的社会化网络推荐技术进行概括、比较与分析;在此基础上,对这一研究领域未来可能的研究方向进行了总结与展望.
-
关键词:
- 基于位置的社会化网络 /
- 推荐系统 /
- 兴趣点 /
- 异构网络 /
- 社交媒体
Abstract: The rapid development of mobile Internet technology, positioning technology and wireless sensor technology has endowed the smart terminal more powerful features and applications. Location-based social networks (LBSNs) and its services have emerged and advanced rapidly. Location data both bridges the gap between the physical and digital worlds and enables deeper understanding of user preferences and behaviors. The location-based and personalized recommendation service in accordance with users’ interests has become dramatically vital in location-based social networks and has widely received attention in both academia and industry. Currently, it is becoming a new research hotspot in the field of recommendation system and social networks. In this paper, we aim at offering a literature review of the former contributions on this program and exploring the relations within the former achievements. We firstly discuss the new properties and challenges that location brings to recommendation systems for LBSNs. Then, we systematically introduce the location-based social network recommendation service from three aspects: the objective, methodology and the major methods for evaluating. We classify recommendation objectives into four categories: location recommendations, friend & companion recommendations, local expert discovery and activity recommendations. According to the use of data set types, location recommendations and friend & companion recommendations are classified. Finally, we point out the possible research directions of this area in the future and arrive at the conclusion of this survey. -
-
期刊类型引用(12)
1. 傅晨波,陈殊杭,胡剑波,潘星宇,俞山青,闵勇. 基于超图嵌入和有限注意力的社会化推荐. 小型微型计算机系统. 2024(01): 115-122 . 百度学术
2. 朱建豪,马文明,王冰,武聪. 融合时空网络和自注意力的兴趣点序列推荐. 计算机工程与设计. 2023(02): 590-597 . 百度学术
3. 汤佳欣,陈阳,周孟莹,王新. 深度学习方法在兴趣点推荐中的应用研究综述. 计算机工程. 2022(01): 12-23+42 . 百度学术
4. 陈江美,张文德. 基于位置社交网络的兴趣点推荐系统研究综述. 计算机科学与探索. 2022(07): 1462-1478 . 百度学术
5. 谭伟,贾朝龙,桑春艳. 一种基于位置和时间信息的兴趣点推荐方法. 重庆大学学报. 2022(07): 93-102 . 百度学术
6. 陈江美,张岐山,张文德,何珑. 融合潜在兴趣和多类型情景信息的兴趣点推荐模型. 情报科学. 2021(03): 143-149+160 . 百度学术
7. 汪涛,夏彬. 基于文本集密度的社交媒体软件内容推荐系统设计研究. 现代电子技术. 2021(12): 73-77 . 百度学术
8. 马健,牛立刚,李昕. 基于多媒体和网络技术的重点高校实验室智能教学系统设计. 现代电子技术. 2021(20): 1-6 . 百度学术
9. 唐静. 在线约跑推荐系统设计. 微型电脑应用. 2020(02): 61-63 . 百度学术
10. 陈江美,张岐山,张文德,何珑. 基于均衡接近度增强时间的兴趣点推荐模型. 小型微型计算机系统. 2020(10): 2075-2081 . 百度学术
11. 刘敏,雷珏. 基于社交网络位置的船运线路个性化推荐系统设计. 舰船科学技术. 2020(22): 190-192 . 百度学术
12. 朱佩佩,龙敏. 基于用户间接信任及高斯填充的推荐算法. 计算机科学. 2019(S2): 178-184 . 百度学术
其他类型引用(22)
计量
- 文章访问数: 1193
- HTML全文浏览量: 0
- PDF下载量: 754
- 被引次数: 34